24 Mg(16 O,2 α p γ) 2006Io02

	History								
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022						

2006Io02: two separate experiments performed with thin and thick ²⁴Mg targets. E=70 MeV ¹⁶O beam from the XTU Tandem Accelerator of the Legnaro National Laboratory. Targets were 400 μ g/cm² self-supporting ²⁴Mg foil and 750 μ g/cm² ²⁴Mg on a 15 mg/cm² Au backing. In thick target experiment, measured E γ , I γ , $\gamma\gamma(\theta)$ with the GASP array of 40 Compton-suppressed HPGe detectors and an 80-element BGO ball. In the thin target experiment, measured γ -2 α -p coin and lifetimes with same detector array used as well as the 4 π charged-particle detector ISIS consisting of 40 Δ E-E Si telescopes. Deduced levels, J, π , γ -ray multipolarities. Comparisons with shell-model calculations.

³¹P Levels

Other: 1982Ra25.

All data are from 2006Io02, unless otherwise noted.

E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡
$0.0^{@}$	$1/2^{+}$	6453.6 [@] 4	$11/2^{+}$		9313.0 [@] 4	$13/2^{+}$	
1266.1 [@] 3	$3/2^{+}$	6501.4 ^{&} 4	9/2-		9449.9 <i>4</i>	$13/2^{-}$	35 fs 14
2233.7 [@] 3	$5/2^{+}$	6796.1 4	9/2-		9599.7 <i>4</i>	$13/2^{+}$	
3294.9 <i>3</i>	$5/2^{+}$	6824.0 ^{&} 4	$11/2^{-}$		10037.0 4	$13/2^{+}$	
3414.7 [@] 3	$7/2^{+}$	7442.0 4	$11/2^{+}$		10217.0 ^{&} 4	$15/2^{-}$	76 fs 21
4191.1 <i>4</i>	$5/2^{+}$	7859.8 4	$11/2^{-}$		10520.1 [@] 4	$15/2^{+}$	0.67 ps 7
4430.9 ^{&} 3	$7/2^{-}$	8077.0 4	$11/2^{-}$		10759.3 4	$15/2^{-}$	
4633.7 3	$7/2^{+}$	8343.5 5	$11/2^+$		11296.9 [@] 4	$17/2^{+}$	1.32 ps 14
5343.1 [@] 3	$9/2^{+}$	8414.3 4	$11/2^{-}$		11733.9 5	$15/2^{+}$	
5892.1 4	$9/2^{+}$	8705.3 ^{&} 4	13/2-	159 fs 28	13879.1 10	$(19/2^+)$	
6079.5 5	$9/2^{+}$	9176.0 4	$13/2^{-}$	83 fs 28			

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] From line-shape analysis with DSAM method (2006Io02).

[#] As proposed for excited states by 2006Io02 based on measured $\gamma\gamma(\theta)$ (ADO) data. Assignments are the same in Adopted Levels, except that some have been given in parentheses where no strong argument is available.

[@] Member of yrast π =+ sequence.

[&] Member of yrast π =– sequence.

 $\gamma(^{31}P)$

 $R_{ADO} = [I\gamma(34^{\circ}) + I\gamma(146^{\circ})]/2I\gamma(90^{\circ}); R_{ADO} \approx 0.8 \text{ for pure } \Delta J = 1 \text{ stretched transition, } \approx 1.35 \text{ for } \Delta J = 2 \text{ stretched transition and } \approx 1.4 \text{ for } \Delta J = 0 \text{ (2006Io02).}$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\ddagger}	Comments
239.8 2	0.26 5	4430.9	$7/2^{-}$	4191.1 5/2+			
483.1 2	0.21 5	10520.1	$15/2^{+}$	10037.0 13/2+			
537.5 2	0.19 4	11296.9	$17/2^{+}$	10759.3 15/2-			
628.4 2	0.48 4	8705.3	$13/2^{-}$	8077.0 11/2-			
709.4 2	0.54 8	5343.1	9/2+	4633.7 7/2+			
744.7 2	1.4 2	9449.9	13/2-	8705.3 13/2-	D ^{&}		Mult.: $\Delta J=0$ transition. R _{ADO} =1.44 <i>16</i> .
767.3 2	0.31 6	10217.0	$15/2^{-}$	9449.9 13/2-			
776.8 2	1.5 2	11296.9	$17/2^{+}$	10520.1 15/2+	M1+E2	+0.17 10	R _{ADO} =1.04 10.

Continued on next page (footnotes at end of table)

²⁴Mg(¹⁶O,2αpγ) 2006Io02 (continued)

$\gamma(^{31}P)$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	Comments
903.9 3	0.22 4	10217.0	$15/2^{-}$	9313.0	$13/2^{+}$			
920.4 3	0.32 7	10520.1	$15/2^+$	9599.7	$13/2^+$			
967.6 <i>3</i>	0.71 5	2233.7	$5/2^{+}$	1266.1	$3/2^{+}$			
988.4 2	1.0 1	7442.0	11/2+	6453.6	11/2+	D+Q		Mult.: $\Delta J=0$ transition. R _{ADO} =1.6 4.
1016.4 2	1.6 2	4430.9	7/2-	3414.7	7/2+	D [@]		Mult.: $\Delta J=0$ transition. Report 43.21
1041.0 2	1.0 2	10217.0	$15/2^{-}$	9176.0	$13/2^{-}$	M1+E2	>+0.30	$R_{ADO} = 1.47 22.$
1061.0 3	7.3 3	3294.9	5/2+	2233.7	5/2+	D+Q		$R_{ADO}=1.32$ 7. Mult.: $\Delta J=0$ transition.
1063.5 4	1.4 <i>1</i>	7859.8	$11/2^{-}$	6796.1	9/2-			
1069.8 <i>3</i>	1.8 2	10520.1	$15/2^{+}$	9449.9	$13/2^{-}$			
1080.1 <i>3</i>	0.8 2	11296.9	$17/2^{+}$	10217.0	$15/2^{-}$			
1099.2 4	0.8 3	9176.0	13/2-	8077.0	$11/2^{-}$			
1106.4 4	0.10 4	9449.9	$13/2^{-1}$	8343.5	$11/2^+$	D.O		D 112.10
1110.5 3	3.8 4	6453.6	11/21	5343.1	9/2	D+Q		$R_{ADO} = 1.13 \ 10.$
1135.7 3	16.1 9	4430.9	7/2-	3294.9	5/2+	D [@]		R _{ADO} =0.83 4.
1181.1 3	2.4 2	3414.7	7/2+	2233.7	5/2+	D+Q		$R_{ADO} = 0.48 \ 9.$
1207.3 4	0.25 8	10520.1	15/2+	9313.0	$13/2^+$	D		
1218.8 3	5.0 2	4633.7	7/2*	3414.7	7/2+	D+Q		Mult.: $\Delta J=0$ transition. R _{ADO} =1.44 9.
1253.4 <i>3</i>	2.2 2	8077.0	11/2-	6824.0	11/2-	D&		Mult.: $\Delta J=0$ transition. R _{ADO} =1.25 <i>15</i> .
1259.6 4	0.60 7	11296.9	$17/2^{+}$	10037.0	$13/2^{+}$			
1266.1 4	100 3	1266.1	$3/2^{+}$	0.0	$1/2^{+}$	D+Q		R _{ADO} =0.75 2.
1338.7 4	4.8 4	4633.7	7/2+	3294.9	5/2+	D+Q		R _{ADO} =1.15 10.
1344.3 5	0.09 3	10520.1	$15/2^{+}$	9176.0	$13/2^{-}$			
1373.2 5	0.8 1	9449.9	13/2-	8077.0	$11/2^{-}$			
1445.6 4	1.2 2	6079.5	9/2+	4633.7	7/2+	D+Q	+0.13 8	$R_{ADO} = 0.94 \ I3.$
1480.8 <i>3</i>	15.1 6	6824.0	$11/2^{-}$	5343.1	9/2+	D [@]		R _{ADO} =0.81 4.
1511.9 5	0.16 4	10217.0	$15/2^{-}$	8705.3	$13/2^{-}$	0		
1516.8 5	1.6 3	11733.9	15/2+	10217.0	15/2-	D [@]		Mult.: $\Delta J=0$ transition. R _{ADO} =1.31 <i>18</i> .
1590.1 5	1.1 2	8414.3	11/2-	6824.0	11/2-	D&		Mult.: $\Delta J=0$ transition. R _{ADO} =1.37 11.
1697 ^{#a}	<0.03 [#]	11296.9	$17/2^{+}$	9599.7	$13/2^{+}$			
1733.9 6	0.9 3	9176.0	$13/2^{-}$	7442.0	$11/2^{+}$			
1802.8 5	0.6 1	10217.0	$15/2^{-}$	8414.3	$11/2^{-}$			
1814.5 4	4.2 4	10520.1	$15/2^{+}$	8705.3	$13/2^{-}$	D [@]		$R_{ADO} = 0.81 \ 8.$
1819.6 6	0.61 6	6453.6	$11/2^{+}$	4633.7	$7/2^{+}$			
1871.1 6	1.2 6	9313.0	$13/2^{+}$	7442.0	$11/2^+$			
1881.3 4	9.5 8	8705.3	$13/2^{-}$	6824.0	$11/2^{-}$	M1+E2	+0.20 6	R _{ADO} =1.08 7.
1909.2 5	0.9 1	8705.3	$13/2^{-}$	6796.1	9/2-			
1913.1 5	0.7 <i>3</i>	8414.3	$11/2^{-}$	6501.4	9/2-			
1928.4 4	33.7 <i>13</i>	5343.1	9/2+	3414.7	7/2+	D+Q		R _{ADO} =0.82 4.
1957.2 6	0.55 6	4191.1	$5/2^{+}$	2233.7	$5/2^{+}$			
1984 ^{#a}	<0.03 [#]	11296.9	$17/2^{+}$	9313.0	$13/2^{+}$			
2007.8 7	0.2 1	9449.9	$13/2^{-}$	7442.0	$11/2^{+}$			
2028.6 4	25.9 9	3294.9	5/2+	1266.1	3/2+	D+Q		R _{ADO} =1.16 4.
2048.3 4	2.9 4	5343.1	9/2+	3294.9	5/2+	Q		$R_{ADO} = 1.32 \ 12.$
2070.4 4	7.1 4	6501.4	9/2-	4430.9	7/2-	D+Q		R _{ADO} =1.72 20.
2139.6 5	0.54 8	10217.0	$15/2^{-}$	8077.0	$11/2^{-}$	0		D 1444
2148.04	13 5	3414./ 10520.1	1/2'	1200.1	5/2' 11/2+	Q		$\kappa_{ADO} = 1.44$ 4.
21/0.4 0	0.09 2	10520.1	13/2	0343.3	11/2			

Continued on next page (footnotes at end of table)

²⁴Mg(¹⁶O,2αpγ) 2006Io02 (continued)

$\gamma(^{31}P)$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\ddagger}	Comments
2197.0.4	1866	4430.9	7/2-	2233 7	5/2+	D [@]		$R_{+} = -0.83.5$
2203.6.6	092	8705 3	$13/2^{-}$	6501.4	$9/2^{-}$	D		R _{AD0} =0.05 5.
2233.5.4	26.4	2233.7	$5/2^+$	0.0	$1/2^+$	0		$R_{ADO} = 1.24.8$
2251.6.5	0.8.7	8705.3	$13/2^{-}$	6453.6	$11/2^+$	×		RADO 1.21 0.
2351.6.6	0.5 /	9176.0	$13/2^{-}$	6824.0	$11/2^{-}$			
2356.8 6	0.8 2	10217.0	$15/2^{-}$	7859.8	$11/2^{-}$			
2365.0 4	4.2 3	6796.1	$9/2^{-}$	4430.9	$7/2^{-}$	D+O		$R_{ADO} = 0.70 5.$
2393.0 4	22.9 6	6824.0	$11/2^{-}$	4430.9	$7/2^{-}$	0		$R_{ADO} = 1.47$ 7.
2399.7 5	3.4 4	4633.7	$7/2^+$	2233.7	$5/2^{+}$	C C		ADO
2477.3 6	0.23 7	5892.1	9/2+	3414.7	$7/2^+$			
251686	107	7859.8	$\frac{11}{2^{-}}$	5343 1	$9/2^{+}$	D [@]		$R_{ADO} = 0.85 11$
2557 7 9	0.8.2	11733.9	$15/2^+$	9176.0	$13/2^{-}$	D		KADO 0.00 III.
2582.1.9	0.7.3	13879.1	$(19/2^+)$	11296.9	$17/2^+$			
2594.7.6	0.4.2	10037.0	$13/2^+$	7442.0	$11/2^+$			
2625.7 6	1.4 1	9449.9	$13/2^{-}$	6824.0	$11/2^{-}$	M1+E2	>+0.2	$R_{ADO} = 1.31 21.$
2722.3.5	501	0176.0	13/2-	6453.6	$11/2^+$	D [@]	_	$\mathbf{R}_{+\mathrm{Po}} = 0.84$ 7
2722.5 5	112	8077.0	$\frac{13/2}{11/2^{-}}$	53/3 1	$0/2^+$	D		KADO-0.04 7.
285916	1.1.2	9313.0	$\frac{11/2}{13/2^+}$	6453.6	$\frac{9/2}{11/2^+}$	D+O	$\pm 0.25.10$	R_{4} = -1.16.18
2039.1 0	1.0 2	4191.1	$5/2^+$	1266.1	$\frac{11}{2}$ $\frac{3}{2^+}$	D⊤Q	+0.25 10	$R_{ADO} = 1.10$ 10.
3028 5 9	1.57	11733.9	$\frac{5/2}{15/2^+}$	8705.3	$\frac{3}{2}$ $13/2^{-}$			
3038 7 5	22 5 7	6453.6	$11/2^+$	3414.7	$7/2^+$	0		$R_{ADO} = 1.24.7$
3078 1 6	0.18.3	10520.1	$15/2^+$	7442.0	$11/2^+$	X		$R_{ADO} = 1.2 + 7.2$
3086.4 6	1.3 /	6501.4	$9/2^{-}$	3414.7	$7/2^+$			
3109.4 6	4.7.3	5343.1	$9/2^+$	2233.7	$5/2^+$	0		$R_{ADO} = 1.27.16$
3145.7 7	0.09 4	9599.7	$13/2^+$	6453.6	$11/2^+$	×		ADO 1127 101
3164.6 7	0.9 2	4430.9	$7/2^{-}$	1266.1	$3/2^+$			
3233.4 7	0.5 1	9313.0	$13/2^{+}$	6079.5	$9/2^{+}$			
3294.7 7	0.28 5	3294.9	$5/2^{+}$	0.0	$1/2^{+}$			
3367.6 7	0.5 2	4633.7	$7/2^+$	1266.1	$3/2^{+}$			
3380.7 6	1.6 3	6796.1	9/2-	3414.7	$7/2^+$			
3392.5 6	4.0 9	10217.0	$15/2^{-}$	6824.0	$11/2^{-}$	Q		R _{ADO} =1.34 14.
3428.6 6	2.0 1	7859.8	$11/2^{-}$	4430.9	7/2-	Q		R _{ADO} =1.36 <i>17</i> .
3582.8 7	0.13 5	10037.0	$13/2^{+}$	6453.6	$11/2^{+}$			
3645.6 7	0.9 2	8077.0	$11/2^{-}$	4430.9	7/2-	Q		R _{ADO} =1.3 3.
3658.2 5	2.4 2	5892.1	9/2+	2233.7	$5/2^{+}$	Q		R _{ADO} =1.31 21.
3707.6 7	0.2 1	9599.7	$13/2^{+}$	5892.1	$9/2^{+}$			
3846.3 7	2.4 2	6079.5	9/2+	2233.7	$5/2^{+}$			
3934.6 7	1.5 2	10759.3	$15/2^{-}$	6824.0	$11/2^{-}$	Q		R _{ADO} =1.27 25.
3983.3 7	0.9 1	8414.3	11/2-	4430.9	7/2-	Q		R _{ADO} =1.35 21.
4026.6 5	5.3 2	7442.0	$11/2^{+}$	3414.7	7/2+	Q		R _{ADO} =1.37 <i>13</i> .
4066 ^{#a}	<0.06 [#]	10520.1	$15/2^{+}$	6453.6	$11/2^{+}$			
4144.5 7	0.17 5	10037.0	$13/2^{+}$	5892.1	$9/2^{+}$			
4257.1 8	0.06 3	9599.7	$13/2^{+}$	5343.1	9/2+			
4431.0 7	0.28 6	4430.9	$7/2^{-}$	0.0	$1/2^{+}$	[E3]		
4472.7 9	0.06 2	11296.9	$17/2^{+}$	6824.0	$11/2^{-}$	[E3]		
4693.6 8	1.0 2	10037.0	$13/2^{+}$	5343.1	9/2+	Q		R _{ADO} =1.4 3.
4928.5 8	1.1 <i>1</i>	8343.5	$11/2^{+}$	3414.7	7/2+	Q		R _{ADO} =1.4 3.
5280.3 19	0.7 1	11733.9	$15/2^{+}$	6453.6	$11/2^{+}$	Q		R _{ADO} =1.5 3.

[†] From $\gamma\gamma(\theta)$ (ADO) data of 2006Io02. The evaluators assign mult=Q for $\Delta J=2$, quadrupole transitions and D or D+Q for $\Delta J=1$ and in a few cases $\Delta J=0$ transitions. 2006Io02 assign E2 for the former and mostly M1+E2 for the latter, and E1 for pure dipole transitions, except for 744.7 γ , 1253.4 γ and 1590.1 γ for which they assign M1. When level lifetimes are known, RUL is used to

24 Mg(16 O,2 α p γ) 2006Io02 (continued)

$\gamma(^{31}P)$ (continued)

assign M1+E2.

[‡] From $\gamma\gamma(\theta)$ (ADO) data of 2006Io02.

[#] From table IV of 2006Io02, with intensity deduced from branching ratio. ^(a) E1 assigned by 2006Io02 based on $\gamma\gamma$ (ADO) data which suggest pure dipole. [&] M1 assigned by 2006Io02 based on $\gamma\gamma$ (ADO) data which suggest pure dipole.

^{*a*} Placement of transition in the level scheme is uncertain.

 ${}^{31}_{15}P_{16}$

-

 ${}^{31}_{15}\mathrm{P}_{16}$ -7