C(³¹Ne, ³⁰Ne) **2014Na10**

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh NDS 184, 29 (2022) 24-Jun-2022

Includes Pb(31 Ne, 30 Ne γ).

2014Na10,2012Ta02,2009Na39: 31 Ne beam was produced by fragmentation of 345 MeV/nucleon 48 Ca primary beam on a Be target at the RIKEN Nishina Center and the Center for Nuclear Study, University of Tokyo. Fragments were separated by BigRips separator and the secondary beam of 31 Ne was incident on Pb (thickness 3.37 g/cm²) and C (thickness 2.54 g/cm²) targets with mean energies of 234- and 230-MeV/nucleon (mid target), respectively, at the entrance of ZeroDegree Spectmenter (ZDS). Outgoing 30 Ne fragments were identified by ZDS and also used to extract momentum distribution of the 30 Ne residues, γ rays in coincident with 30 Ne were detected by DALI2 γ -ray detector array, consists of 182 NaI(Tl) scintillator crystals. Deduced inclusive and γ -ray tagged partial cross sections for one-neutron removal from 31 Ne on C and Pb targets, S(n), and g.s. J $^{\pi}$.

S(n) value for 31 Ne was estimated as 0.15 MeV +16-10 using deduced spectroscopic factors C^2 S from the 30 Ne(0⁺) partial cross section on the C target and Coulomb breakup on the Pb target as a function of the assumed S(n) and J^{π} of 31 Ne (2014Na10).

³¹Ne Levels

 $\frac{\text{E(level)}}{0} \frac{J^n}{3/2^-}$

Comments

 J^{π} : from comparisons of measured inclusive and partial one-neutron removal cross sections, inclusive parallel momentum distribution of 30 Ne residues with eikonal-model predictions using C^2 S value noted below. From consistency of the measured data with the shell model calculations, 31 Ne is identified as deformed and having a significant p-wave halo component.

 C^2S $(0_1^+; 2p_{3/2})=0.32 +21-17$, obtained from shell model calculations considering SDPF-M interactions (2014Na10).

Interaction σ =1435 mb 22 (2012Ta02). Glauber-type analysis of data and interpretation in terms of low (L=0 or 1) orbital halo structure in 31 Ne.

In-removal σ =90 mb 7 (2014Na10), 79 mb 7 (2009Na39) on a carbon target; 720 mb 61 (2014Na10), 712 mb 65 (2009Na39), on a Pb target.