Adopted Levels

	His	tory		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022	

 $Q(\beta^{-})=1.894\times10^{4} 27$; $S(n)=1.7\times10^{2} 13$; S(p)=25070 SY; $Q(\alpha)=-15910 SY = 2021$ Wa16

 $\Delta S(p)=570, \Delta Q(\alpha)=570 \text{ (syst,} 2021 \text{Wa16)}.$

 $S(2n)=3360 \ 310, \ Q(\beta^{-}n)=14640 \ 270 \ (2021Wa16).$

 $Q(\beta^2 n)=12360\ 270$, $Q(\beta^3 n)=7960\ 270$, and $Q(\beta^4 n)=4410\ 270$ deduced by evaluators from masses in 2021Wa16. Mass measurements:

2012Ga45, 2007Ju03: time-of-flight and energy loss method at GANIL. Measured mass excess=31.44 MeV *31* (2012Ga45), 30.82 MeV *162* (2007Ju03).

Other measurements:

1990Gu02: Ta(⁴⁸Ca,X) E=2112 MeV, measured fragment total kinetic energy, time-of-flight, no events were seen for ³¹Ne from which particle instability was implied for ³¹Ne. Later works of 1996Sa34 and 1997Sa14, however, discovered many events associated with ³¹Ne, thus proving that it is a bound nucleus.

1996Sa34: ¹⁸¹Ta(⁵⁰Ti,X) E=80 MeV/nucleon. Measured fragment total kinetic energy, time-of-flight, magnetic rigidity. A total of 23 events were associated with ³¹Ne.

1997Sa14 (conference paper): ¹⁸¹Ta(⁴⁸Ca,X) E=70 MeV/nucleon. Measured fragment total kinetic energy, time-of-flight, magnetic rigidity. A total of 90 events were associated with ³¹Ne.

1998NoZW, 1998NoZZ: ¹⁸¹Ta(⁴⁰Ar,X); fragmentation of ⁴⁰Ar beam. Measured isotopic half-life from β -decay curve.

1998NoZW, 1998NoZZ, 1997Sa14 and 1996Sa34 are from the same group at RIKEN facility. Reaction fragments analyzed by RIPS spectrometer. Detectors: parallel plate avalanche chamber (PPAC) and several surface barrier silicon detectors.

2007Ju03: Measured mass by time-of-flight and energy-loss magnetic spectrograph spectrometer at GANIL. ³¹Ne formed by fragmentation of ⁴⁸Ca beam on a Ta target.

2009Na39, 2010Ta16: Pb,C(³¹Ne,³⁰Ne), E=230-243 MeV/nucleon; measured reaction fragments; deduced Coulomb breakup cross section of 540 mb 70, soft E1 excitations for ³¹Ne, B(E1), deformation and halo effects. RIBF facility at RIKEN. Configuration of 2p_{3/2} is proposed instead of 1f_{7/2}.

Additional information 1.

2012Ta02: ¹²C(³¹Ne,³¹Ne') E=240 MeV/nucleon; ³¹Ne beam from fragmentation of 345 MeV/nucleon ⁴⁸Ca with ⁹Be target at RIKEN facility and using BigRIPS magnetic spectrometer.

2012Su09 (also 2012Mi01): ¹²C(³¹Ne,³¹Ne') E=240 MeV/nucleon: analyzed interaction σ , $\sigma(\theta)$; deduced deformation parameter as ≈ 0.4 in the 'Island of Inversion'.

Theoretical analysis of structure of ³¹Ne g.s. based on single-neutron removal and Coulomb dissociation experimental results: 2017Ho27, 2012Ur06, 2010Ha05, 2010Ho03.

³¹Ne nuclide is relevant to the 'Island of Inversion' and halo structure.

Theoretical calculations: 35 primary references for nuclear structure and one for decay characteristics retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed under 'document records'.

³¹Ne Levels

Cross Reference (XREF) Flags

- A $C(^{31}Ne, ^{30}Ne)$
- **B** ${}^{9}\text{Be}({}^{33}\text{Mg},X)$

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	$(3/2^{-})$	3.4 ms 8	Α	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?; \ \%\beta^{-}4n=?$
				Only the β^- decay has been observed, and particle stability established by 1996Sa34 and
				1997Sa14.
				Theoretical $T_{1/2}=15.0 \text{ ms}$, $\%\beta^{-}n=59$, $\%\beta^{-}2n=11$, $\%\beta^{-}3n=0$ (2019Mo01).
				Theoretical $T_{1/2}=7.7$ ms, $\%\beta^{-}n=81.5$; $\%\beta^{-}2n=9.9$, 10.0; $\%\beta^{-}3n=0.68$, 0.57;
				$\%\beta^{-}4n=0.007, 0.003 (2021Mi17).$

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

³¹Ne Levels (continued)

E(level)	XREF	Comments		
J ^{π} : from comparisons of m parallel momentum distr $2p_{3/2}$)=0.32 +21-17 obt (2014Na10). From consi as deformed and having Configuration=v1/2[330] w calculations (2011Ur01, dissociation of ³¹ Ne. Ho $\beta_2 \approx 0.95$ or with oblate μ 2012Su09 analyze $\sigma(\theta)$ $\beta_2 \approx 0.4$.		 J^π: from comparisons of measured inclusive and partial one-neutron removal cross sections, inclusive parallel momentum distribution of ³⁰Ne residues with eikonal-model predictions using C²S(0₁⁺; 2p_{3/2})=0.32 +21-17 obtained from shell-model calculations considering SDPF-M interactions (2014Na10). From consistency of the measured data with the shell-model calculations, ³¹Ne is identified as deformed and having a significant p-wave halo component. Configuration=v1/2[330] with β₂=0.2 is favored over the v3/2[321] with β₂=0.55 in the theoretical calculations (2011Ur01, 2012Ur06) and comparison with measured cross sections for the Coulomb dissociation of ³¹Ne. However, 2011Ur01 point out that 1/2⁺ configurations such as 1/2[200] with β₂≈0.95 or with oblate β₂≈-0.35 cannot be excluded only from the Coulomb dissociation data. 2012Su09 analyze σ(θ) data in ¹²C(³¹Ne,³¹Ne') E=240 MeV/nucleon obtained by 2012Ta02 and deduce β₂≈0.4. T_{1/2}: tentative half-life from β-decay curve (1998NoZW,1998NoZZ). Further experimental measurements 		
0.30×10 ³ ? 17	В	are needed for the nan-me measurement.		
1092?	В			
1.50×10 ³ ? 33	В			
2292?	В			
2535?	В			
3735?	В			