¹⁹⁷Au(³¹Na,³¹Na' γ) 2001Pr01,2002Pr12

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022						

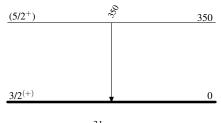
Mainly Coulomb interaction.

2001Pr01: E=58.9 MeV/nucleon ³¹Na beam was produced by fragmentation of 80 MeV/nucleon ⁴⁸Ca primary beam on a ⁹Be target at NSCL. Fragments were separated by A-1200 fragment separator and impinged a 702 mg/cm² ¹⁹⁷Au target. Reaction products and scattered particles were detected and identified by a zero degree phoswich detector (ZDD). γ rays were detected in coincidence with ³¹Na ions using an array of NaI(Tl) detectors surrounding the target. Measured E γ , particle- γ -coin, σ . Deduced levels, J, π , charge and mass deformations. Comparisons with shell-model calculations. 2002Pr12: Reanalysis of data in 2001Pr01.

³¹Na Levels

E(level)	$J^{\pi \ddagger}$	Comments		
0†	$3/2^{(+)}$			
350 [†] 20	$(5/2^+)$	B(E2)↑=0.031 +17-13 (2002Pr12)		
		J^{π} : 7/2 ⁺ would require unlikely $\beta_2 = 0.94$ (2001Pr01).		
		B(E2) [†] : from re-analysis of data in 2001Pr01 with $\beta_{\rm C}$ =0.66 <i>16</i> , $\beta_{\rm A}$ =0.74 <i>18</i> , and intrinsic quadrupole moment Q ₀ =78 fm ² <i>19</i> , assuming equal excitations of this level and the 7/2 ⁺ level.		
		$\beta_2=0.59 \ 10 \ \text{from } 2001\text{Pr}01 \text{ assuming } 95\% \text{ deexcitations of the } 7/2^+ level feeds this level and Coulomb$		
		deformation parameter $\beta_{\rm C}$ =0.59 10 is equal to nuclear matter deformation parameter $\beta^{\rm A}$.		
(1163)	7/2+	E(level): rounded value from Adopted Levels. 2002Pr12 claim that it is certain this level is populated in this reaction but no γ transition deexciting this level is observed.		

[†] Possible member of $K^{\pi}=3/2^+$ band.


[‡] As given in 2001Pr01.

 $\gamma(^{31}\text{Na})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}		Comments
350 20	350	$(5/2^+)$	0	3/2(+)	σ =115 mb 32 for 350 γ (2001Pr01).	

197 Au(31 Na, 31 Na' γ) 2001Pr01,2002Pr12

Level Scheme

 $^{31}_{11}Na_{20}$