History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022							

2011Se05: ¹⁰⁹Ag(³¹Mg,³¹Mg') E=3.0 MeV/nucleon ³¹Mg beam was produced by bombarding a 50 g/cm² UC_x target with 1.4 GeV protons from the CERN PS booster. Secondary target was enriched ¹⁰⁹Ag of thickness 1.9 mg/cm² and 4.0 mg/cm². Scattered beam and recoiling target nuclei detected by 500 μ m thick double sided silicon strip detector (DSSSD) and de-excitation γ -rays detected by MINIBALL γ -spectrometer which consists of eight triple cluster detectors in close geometry each containing six-fold segmented HPGe crystals. Measured E γ , I γ , particle- γ prompt coincidence, γ yields. Deduced levels, J, π , B(E2), B(M1) (via GOSIA code).

Other: 2000PrZX: ¹⁹⁷Au(³¹Mg,³¹Mg').

All data are from 2011Se05, unless otherwise noted.

³¹Mg Levels

$J^{\pi \dagger}$	Comments						
$/2^{+}$							
$3/2^{+}$							
$3/2^{(-)}$							
3/2+	B(E2)↑=0.0021 8 (2011Se05)						
	$B(E2)(up)$ value: excitation from $1/2^+$ g.s.						
$5/2^{+}$	B(E2)↑=0.0182 20 (2011Se05)						
	B(E2) \uparrow value: excitation from 1/2 ⁺ g.s. Other: B(E2) \uparrow ≤0.0125 47 (2000PrZX).						
5 5 5	$\frac{J^{\pi^{\dagger}}}{2^{+}}$ $\frac{J^{2^{+}}}{2^{+}}$ $\frac{J^{2^{-}}}{2^{+}}$ $\frac{J^{2^{+}}}{2^{+}}$						

 † As proposed by 2011Se05.

$\gamma(^{31}Mg)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α^{\dagger}	Comments
50	3/2+	50	100	0	1/2+	[M1]	0.01319 18	α (K)=0.01235 <i>17</i> ; α (L)=0.000807 <i>11</i> ; α (M)=2.94×10 ⁻⁵ <i>4</i>
221	3/2 ⁽⁻⁾	171		50	3/2+	[E1]	1.04×10 ⁻³ 2	$\alpha(K)=0.000975 \ 14; \ \alpha(L)=6.26\times10^{-5} \ 9; \ \alpha(M)=2.307\times10^{-6} \ 32$
		221		0	$1/2^{+}$	[E1]		
673	$3/2^{+}$	623		50	$3/2^+$	[M1,E2]		B(E2)↓=0.0024 12 (2011Se05)
		673		0	$1/2^{+}$	[M1,E2]		$B(E2)\downarrow = 0.0011 \ 5 \ (2011Se05)$
945	$5/2^{+}$	724	24 7	221	$3/2^{(-)}$	[E1]		$B(E1) \downarrow > 8.9 \times 10^{-6} (2011 \text{ seo 5})$
	,	895	74 12	50	$3/2^{+}$	[M1+E2]		E_{γ} : other: 905 13 (2000PrZX).
					,			B(M1)=0.1-0.5, depending on δ value and absolute E2 strength (2011Se05).
		(945)		0	1/2+			E_{γ} , I_{γ} : not observed in 2011Se05. Energy is from level-energy difference; 2011Se05 give an upper limit of 2.6 8 for intensity.

[†] Additional information 1.

Coulomb excitation 2011Se05 Legend Level Scheme Intensities: % photon branching from each level γ Decay (Uncertain) . + 835 Martes 7.4 + 224 1811,24 348 5/2+ 945 673 MU, 123 623 MU, 123 623 MU, 123 3/2+ 673 $|z_{j_{k_{l_j}}}|$ + 1₇₁ 3/2(-) 001/14/1 05 + 221 $\frac{3/2^+}{1/2^+}$ 50 0

