Adopted Levels, Gammas

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022

 $Q(\beta^{-})=118294$; S(n)=23123; S(p)=188866; $Q(\alpha)=-1260090$ 2021Wa16 S(2n)=86523, S(2p)=36100150, $Q(\beta^{-}n)=46714$ (2021Wa16).

This nucleus is part of a set of nuclei around N=20 belonging to the "island of inversion" where the ground state is deformed from a spherical shell. The ground state and first excited state spins are critical in proving the intruder dominant configuration (2005Ma96).

Mass measurements: 2013Ch49, 2006Ga04 (also 2006Lu09 from the same group).

Other measurements:

2017Ha23: measured half-life of ³¹Mg from implant- β (t). ³¹Mg from ⁹Be(⁴⁰Ar,X) reaction with E(⁴⁰Ar)=69.2 MeV/nucleon from the RIBLL facility at HIRFL, Lanzhou.

2012Yo01 (also 2010Yo08): first application of nuclear orientation method for study of isotope shifts in nuclei. Atomic isotope shifts measured using collinear laser spectroscopy and β -asymmetry with reference to ²⁶Mg for all measurements at CERN-ISOLDE. The data are consistent for ³¹Mg being in the "Island of Inversion".

2012Kw02: production cross section measurement in fragmentation of ⁴⁰Ar beam at 140 MeV/nucleon with ⁹Be, Ni and ¹⁸¹Ta targets by time-of-flight and energy loss measurements at NSCL facility.

2012Zh06: ⁹Be(⁴⁰Ar,X) E=57 MeV/nucleon, measured fragment yield, momentum distributions at HIRFL facility; deduced target dependence on production cross section.

2006Kh08: cross section and strong absorption radius measurement in Si(³¹Mg,X) reaction at 52.25 MeV/nucleon.

2011Ne14: critical review of experimental data leading to ground and excited states in 31 Mg; comparison with calculated levels, J, π , magnetic moments, particle-hole nature using Antisymmetrized molecular dynamics (AMD) with the generator coordinate method.

Theoretical calculations: 35 primary references for structure and three for decay characteristics retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed under 'document records'.

Additional information 1.

³¹Mg Levels

Cross Reference (XREF) Flags

A	³¹ Na $β^-$ decay (17.0 ms)	E	${}^{9}\text{Be}({}^{32}\text{Mg},{}^{31}\text{Mg}\gamma)$
B	³² Na $β^-$ n decay (13.2 ms)	F	${}^{9}\text{Be}({}^{32}\text{Al},{}^{31}\text{Mg}\gamma)$
C	33 Na β^- 2n decay (8.0 ms)	G	4 He(HI,x γ)
D	2 H(30 Mg, 31 Mg γ)	H	Coulomb excitation

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0#	1/2+	270 ms 2	ABCDEFGH	$%β^-=100; %β^-n=6.2$ 19 (2008ReZZ,1995ReZZ) μ=-0.88340 15 (2008Ko05,2005Ne01,2019StZV) The ground state is conjectured to be indicative of deformed 2p3h intruder state (2007Ki08); its 1/2 ⁺ spin measurement and half-life can only be explained by a

hole coupled to a deformed core of 32 Mg. In Nilsson configuration this corresponds to a K^{π} =1/2⁺ component from the d_{3/2} spherical orbit with 1/2[200] configuration (2007Ki08).

J^{π}: spin from measured (2005Ne01) hyperfine splitting using β -NMR combined with a measurement of the g-factor of ³¹Mg and compared to prediction using the isotope independent hyperfine field value for ²⁵Mg data; parity from measured l_p=0 for the Isobaric Analog Resonance (IAR) state in ³¹Al (2014Im02).

 $T_{1/2}$: from 2017Ha23 (implant- β (t)). Other (less precise measurements): 235 ms 25 (2008ReZZ,1995ReZZ), 237 ms 25 (2005Ma86), 230 ms 20 (1984La03), and 250 ms 30 (1979De02). 1984La03 and 1979De02 are from the same research group but different methods were used to measure half-life.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³¹Mg Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	Χ	REF	Comments		
					μ: from collinear laser spectroscopy and β ⁻ NMR spectroscopy at ISOLDE-CERN facility (2008Ko05,2005Ne01). Original value is -0.88355 <i>15</i> with respect to previously known μ (²⁵ Mg)=-0.85545 <i>8</i> (1951Al11) and the quoted value is with respect to the new adopted μ (²⁵ Mg)=-0.85533 <i>3</i> (2013An23,2019StZV). Other publications by the same group: 2006Ko55, 2005Ko41, 2005Ko50, 2001Ne16. Additional information 2. %β ⁻ n from 2008ReZZ, 1995ReZZ. Other: %β ⁻ n=1.7 <i>3</i> (1984La03,1984Gu19) is in disagreement. Systematics support higher value of 1995ReZZ. Theoretical values of %β ⁻ n=1.0 (2019Mo01) and 0.31, 0.40 (2021Mi17) support the lower value. In the opinion of evaluators, better measurements are needed for %β ⁻ n value. <ros<sup>2=1.199 fm² <i>14</i> (2006Kh08). δ<r<sup>2>(²⁶Mg,³¹Mg)=+0.710 fm² <i>13</i> (stat) <i>79</i> (syst) (2012Yo01). <r<sup>2>^{1/2}=3.1488 fm 20 (stat) <i>127</i> (syst) (2012Yo01).</r<sup></r<sup></ros<sup>		
49.93 [#] 6	3/2+	12.0 ns 4	ABCDEFGH		J ^π : spin from β polarization asymmetry in ³¹ Na β ⁻ decay (2019Ni04); allowed β feeding from 3/2 ⁺ parent; measured L(p)=2 for the Isobaric Analog Resonance (IAR) state in ³¹ Al (2014Im02). Shell-model calculations in <i>sdpf</i> space support 3/2 since predicted 1/2 ⁺ is the g.s. and the first 1/2 ⁻ is predicted to occur at about 1.5 MeV (2005Ma96). 3/2 ⁺ assignment for this level is indicative of a deformed 2p3h intruder state. In Nilsson configuration this corresponds to a K^{π} =3/2 ⁺ component from the d _{3/2} spherical orbit (2007Ki08). T _{1/2} : from βγ(t) in ³¹ Na β ⁻ decay.		
220.87 [@] 6	(3/2) ⁻	133 ps 8	ABCDEFGH		J^{π} : $1/2^{-}$, $3/2^{-}$ from measured $l_p=1$ for the Isobaric Analog Resonance (IAR) state in ³¹ Al (2014Im02); shell-model predictions (2007Ki08) and band assignment (2019Ni04) support $3/2^{-}$.		
460.78 [@] 10	(7/2 ⁻)	10.5 ns 8	AB	EF	$I_{1/2}$: preliminary value from $\beta\gamma\gamma(t)$ in $\beta\gamma\alpha(t)$ decay (2005Ma96). J^{π} : γ to (3/2) ⁻ , shell-model prediction (2007Ki08) and band assignment (2019Ni04).		
673.09 7	3/2+		A	EF H	$T_{1/2}$: preliminary value from βγγ(t) in ³² Na β ⁻ n decay (2005Ma96). B(E2)↑=0.0021 8 (2011Se05)		
					J ^{π} : spin from β polarization asymmetry in ³¹ Na β^- decay (2019Ni04); allowed β feeding from 3/2 ⁺ parent.		
941.92 9	$(1/2^{-},3/2^{-})^{\ddagger}$		A	e G	J^{π} : probable 3/2 ⁻ bandhead of theoretically predicted $K^{\pi}=3/2^{-}$, 3/2[321] band (2019Ni04).		
944.03 [#] 9	5/2+		AB	eF H	B(E2) \uparrow =0.0182 20 (2011Se05) J ^{π} : from β polarization asymmetry in ³¹ Na β ⁻ decay (2019Ni04) from 3/2 ⁺ parent. 2p3h state predicted by model calculations (2007Ki08).		
1028.66 9	$(1/2^{-},3/2^{-})^{\ddagger}$		Α				
1154.0 5	(7/2 ⁺)		В	EF	J^{π} : γ to (7/2 ⁻); cross section in (³² Al, ³¹ Mg γ) and model considerations (2007Ki08); 2005Ma96 proposed 11/2 ⁻ based on another calculation		
1389.8 10			В		J^{π} : $5/2^{-}$ from theoretical predictions (2011Ne14).		
1435.94 8	$(1/2^{-}, 3/2^{-})^{\ddagger}$		A				
2015.14 9	5/2+		A	F	J ^π : β polarization asymmetry in ³¹ Na β^- decay (2019Ni04) from 3/2 ⁺ parent; also from cross section in (³² Al, ³¹ Mgγ) and model considerations (2007Ki08).		
2243.66 6	1/2+		A	E	J ^π : β polarization asymmetry in ³¹ Na β^- decay (2019Ni04); allowed β feeding from 3/2 ⁺ parent.		

[†] From a least-squares fit to γ -ray energies.

Adopted Levels, Gammas (continued)

³¹Mg Levels (continued)

[‡] Assignments proposed by 2019Ni04 in ³¹Na β^- decay, based on high log *ft* values, and consistency of ratio of intensities of γ rays from each level with Weisskopf estimates for E1 and M1 transitions. However, evaluators notes that no lifetime data are available.

Member of $K^{\pi} = 1/2^+$, $\nu 1/2[200]$ sequence (2019Ni04).

[@] Member of $K^{\pi} = 1/2^{-}$, v1/2[330] sequence (2019Ni04).

$\gamma(^{31}Mg)$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
49.93	3/2+	49.9 <i>1</i>	100	0.0	1/2+	[M1]	0.01325 20	B(M1)(W.u.)=0.0106 21 E _γ : others: 50.0 5 from ³² Na β ⁻ n decay and 50.1 2 from ³³ Na β ⁻ 2n decay.
220.87	(3/2)-	171.1 <i>I</i>	100 5	49.93	3/2+	[E1]	1.04×10 ⁻³ 2	B(E1)(W.u.)=0.00073 8 α (K)=0.000974 14; α (L)=6.25×10 ⁻⁵ 9; α (M)=2.303×10 ⁻⁶ 33 E _y : weighted average of 170.9 1 from ³¹ Na β^- decay, 171.0 5 from ³² Na β^- n decay, 171.2 1 from ³³ Na β^- 2n decay, and 169.6 15 from (HI,x γ). I _y : from (³² Al, ³¹ Mg γ). Others: 100 8 (2019Ni04), 100 6 (1993KI02) and 100 7 (1984Gu19) in ³¹ Na β^- decay, 100 22 from ³² Na β^- n decay, 100 12 from ³³ Na β^- 2n decay, and 100 6
		220.9 1	35.5 20	0.0	1/2+	[E1]	0.000465 7	from $({}^{32}\text{Mg}, {}^{31}\text{Mg}\gamma)$. B(E1)(W.u.)=0.000139 <i>18</i> α =0.000465 <i>7</i> ; α (K)=0.000436 <i>6</i> ; α (L)=2.80×10 ⁻⁵ <i>4</i> ; α (M)=1.034×10 ⁻⁶ <i>15</i> E _{γ} : weighted average of 220.8 <i>1</i> from ${}^{31}\text{Na} \beta^{-}$ decay, 221.0 <i>5</i> from ${}^{32}\text{Na} \beta^{-}$ n decay, 221.0 <i>1</i> from ${}^{33}\text{Na} \beta^{-2n}$ decay, and 221.9 <i>8</i> from (HI,x γ). I _{γ} : weighted average of 37.1 <i>25</i> (2019Ni04), 40.6 <i>32</i> (1993Kl02), and 44 <i>5</i> (1984Gu19) in ${}^{31}\text{Na} \beta^{-}$ decay, 40 <i>6</i> from ${}^{33}\text{Na} \beta^{-2n}$ decay, 34.0 <i>26</i> from (${}^{32}\text{Mg}, {}^{31}\text{Mg}\gamma$), and 31.4 <i>20</i> from (${}^{32}\text{Al}, {}^{31}\text{Mg}\gamma$). Other: 49 <i>10</i> from ${}^{32}\text{Na} \beta^{-n}$ decay
460.78	(7/2 ⁻)	239.9 1	100	220.87	(3/2)-	[E2]	2.31×10 ⁻³ 3	B(E2)(W.u.)=11.7 9 E _γ : other: 240.0 5 from ³² Na $β^-$ n decay.
673.09	3/2+	452.4 2	10.8 <i>13</i>	220.87	(3/2)-	[E1]		E _γ : other: 452.6 6 from (32 Al, 31 Mgγ). I _γ : weighted average of 10.6 <i>I3</i> (2019Ni04) and 12.6 <i>35</i> (1993Kl02) in 31 Na β ⁻ decay. Other: 20.6 28 from (32 Al, 31 Mgγ) is discrepant.
		623.1 <i>1</i>	100 6	49.93	3/2+	[M1,E2]		B(E2) \downarrow =0.0024 <i>12</i> (2011Se05) B(E2)(W.u.)=4.1 <i>20</i> E _{γ} : other: 623.3 <i>5</i> from (³² Al, ³¹ Mg γ).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{31}Mg)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	${ m J}_f^\pi$	Mult.	Comments
							I _γ : from (³² Al, ³¹ Mgγ). Others: 100 <i>13</i> (2019Ni04), 100 8 (1993Kl02) and 100 8 (1984Gu19) in ³¹ Na β^- decay.
673.09	3/2+	673.1 <i>1</i>	53 4	0.0	1/2+	[M1,E2]	B(E2) \downarrow =0.0011 5 (2011Se05) E _y : other: 673.2 7 from (³² Al, ³¹ Mgy). I _y : unweighted average of 64 4 (2019Ni04), 50 4 (1993Kl02) and 43.5 35 (1984Gu19) in ³¹ Na θ^{-} decay and 53 4 from
							$(^{32}\text{Al}, ^{31}\text{Mg}\gamma).$
941.92	$(1/2^-, 3/2^-)$	892.0 <i>1</i>	100 13	49.93	3/2+		E_{γ} : other: 892.7 6 from (HI,x γ).
044.00	5/0+	941.8 2	88 30	0.0	$1/2^+$		
944.03	5/2+	723.1 1	17.8 33	220.87	(3/2)-		E_{γ} : other: 724 from Coulomb excitation. I_{γ} : weighted average of 17.0 23 (2019Ni04) from ³¹ Na β ⁻ decay and 32 10 from Coulomb excitation.
		894.1 <i>1</i>	100 16	49.93	3/2+		E_{γ} : others: 894.3 5 from ³² Na β ⁻ n decay and 894.4 13 from (³² Al, ³¹ Mgγ).
1028.66	$(1/2^{-}, 3/2^{-})$	807.8 <i>1</i>	100	220.87	$(3/2)^{-}$		
1154.0	$(7/2^+)$	693.2 5	100	460.78	(7/2 ⁻)		E_{γ} : weighted average of 693.5 5 from ³² Na β ⁻ n decay and 692.6 8 from (³² Al, ³¹ Mgγ).
1389.8		929	100	460.78	$(7/2^{-})$		E_{γ} : from ³¹ Na β^{-} n decay only.
1435.94	$(1/2^{-}, 3/2^{-})$	1385.9 <i>1</i>	100 11	49.93	$3/2^{+}$		
		1435.8 2	34 8	0.0	$1/2^{+}$		
2015.14	5/2+	1070.9 2	14 4	944.03	5/2+		E _γ : other: 1072.7 <i>19</i> from (32 Al, 31 Mgγ). I _γ : unweighted average of 17.6 <i>30</i> (2019Ni04) in 31 Na β ⁻ decay and 10.1 <i>16</i> from (32 Al, 31 Mgγ).
		1554.3 <i>1</i>	22 3	460.78	(7/2 ⁻)		E _{γ} : other: 1555.7 22 from (³² Al, ³¹ Mg γ). I _{γ} : weighted average of 20.6 30 (2019Ni04) and 24.0 30 from (³² Al, ³¹ Mg γ).
		1794.3 <i>1</i>	100 12	220.87	$(3/2)^{-}$		E_{γ} : other: 1793.4 18 from (³² Al, ³¹ Mg γ).
		1965.0 2	8.5 18	49.93	$3/2^{+}$		
2243.66	$1/2^{+}$	807.6 <i>1</i>	3.0 13	1435.94	$(1/2^{-}, 3/2^{-})$		
	·	1215.0 <i>1</i>	12.1 9	1028.66	(1/2 ⁻ ,3/2 ⁻)		I _γ : weighted average of 12.6 9 (2019Ni04), 11.6 <i>I</i> 2 (1993Kl02), 11.6 <i>II</i> (1984Gu19), and 22.7 (1970De02) in ³¹ Ne $β^-$ decay
		1301 7 2	0.60.15	941 02	$(1/2^{-} 3/2^{-})$		and 227 (1777DC02) III 1Na p uccay.
		1570.6.2	20.0713	673.00	(1/2, 3/2) $3/2^+$		
		2022 8 1	2.04	220.87	$\frac{3/2}{(3/2)^{-}}$		I : weighted average of 33 3 10 (2010Ni04)
		2022.8 1	55.0 17	220.87	(3/2)		¹ γ. weighted average of 35.5 15 (2019)(104), 33.7 35 (1993Kl02), and 36 4 (1984Gu19) in 31 Na β ⁻ decay. Other: 32 21 from (32 Mg, 31 Mgγ).
		2193.6 <i>1</i>	27.4 19	49.93	3/2+		I _γ : weighted average of 25.9 <i>19</i> (2019Ni04), 30.2 <i>35</i> (1993Kl02), 30 <i>4</i> (1984Gu19), and 29 <i>9</i> (1979De02) in ³¹ Na β ⁻ decay. Other: 27 <i>21</i> from $({}^{32}Ma^{-3}Ma^{-1})$
		2243.6 1	100 6	0.0	$1/2^{+}$		57.21 mom (wig, $wig \gamma$).
				0.0	, –		

[†] Additional information 3. [‡] From ³¹Na β -decay, except as noted.

Adopted Levels, Gammas

 $^{31}_{12}Mg_{19}$

5