Adopted Levels

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022					

 $O(\beta^{-}) = -22940 SY; S(n) = 18820 SY; S(p) = 640 SY; O(\alpha) = -8590 SY$ 2021Wa16

Q(ε)=18360 200, S(2n)=42790 480, S(2p)=160 200, Q(εp)=18100 210 (syst,2021Wa16).

Evaluators deduce $O(\varepsilon_{2p})=13705\ 200$, $O(\varepsilon_{3p})=10956\ 200$ from mass values in 2021Wa16.

Other measurements:

1986La17: First identification of ³¹Ar isotope in reaction: Ni(⁴⁰Ca,X) E=77 MeV/nucleon, at LISE-GANIL facility.

1987Bo36, 1991Bo32: ³¹Ar from fragmentation of ³⁶Ar E=85 MeV/nucleon at LISE-GANIL facility. Measured delayed protons and ³¹Ar half-life. 1991Bo32 supersedes 1987Bo36.

1989Re02: ³¹Ar from reaction: Mg(³He,X) E=110, 135 MeV at LBNL. Measured delayed one-proton and two-proton spectra, mass excess.

1990Bo24: ³¹Ar from Ca(p,xn3p) reaction E=600 MeV at CERN-ISOLDE facility. Measured delayed protons, pp-coin.

1992Ba01: ³¹Ar from fragmentation of ³⁶Ar E=85 MeV/nucleon at LISE-GANIL facility. Measured delayed three-proton decay and half-life.

1999Th09, 1998Ax01, 1998Ax02, 1998Mu06: ³¹Ar from Ca(p,X) E=1 GeV at CERN-ISOLDE facility. Measured delayed 2-proton spectra, angular correlations, recoil energy shift.

1999Fy01: ³¹Ar produced at CERN-ISOLDE facility. Measured E β , E(p), delayed multi-proton branching ratios, upper limit for 3-proton branch,

2000Fy01 (also 2000Bo59): ³¹Ar from Ca(p,X) E=1 GeV at CERN-ISOLDE facility. Measured delayed protons, 2-proton decay, p-p energy and angular correlations, ³¹Ar half-life. Note that 1998Ax02 (from the same group as 2000Fy01) proposed many additional levels based on their observed proton branches, but 2000Fy01 state that a number of assignments in 1998Ax02 of proton groups to corresponding levels in ³¹Cl were incorrect since the two-proton branches were not appropriately considered. The evaluators assume that data in 2000Fy01 supersede those in 1998Ax02.

2002Fy01, 2002Bo29: ³¹Ar from Ca(p,X) E=1 GeV at CERN-ISOLDE facility. Measured Ep, $p\beta$ coin, recoil energy shift.

2014Ko17, 2013Ko13, 2014Ko34, 2016Ma17: ³¹Ar from Ca(p,X) at CERN-ISOLDE facility. Measured Ey, E(p), I(p), py-coin, pp-coin, pp(θ), half-life of ³¹Ar decay with six DSSSDs and two Miniball cluster detectors.

2015Li20 (also 2016Ci05): ³¹Ar from ⁹Be(³⁶Ar,X) E=880 MeV/nucleon at GSI. Measured E(p), I(p), ³¹Ar-p-coin using gaseous optical-readout time-projection chamber (OTPC). Deduced branching ratios for $\beta^+ p$, $\beta^+ 2p$ and $\beta^+ 3p$ modes.

Theoretical calculations: ten primary references for structure and eight for decay characteristics retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed under 'document records'.

Additional information 1.

³¹Ar Levels

Cross Reference (XREF) Flags

⁹Be(³¹Ar,³¹Ar') ⁹Be(³²Ar,³¹Ar) А

В

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	5/2+	15.0 ms <i>3</i>	AB	$ \begin{split} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & &$

Continued on next page (footnotes at end of table)

 $[\]Delta Q(\beta^{-})=360, \Delta S(n)=270, \Delta S(p)=200, \Delta Q(\alpha)=450 \text{ (syst, 2021Wa16).}$

 $^{31}_{18}\text{Ar}_{13}$ -2

Adopted Levels (continued)

³¹Ar Levels (continued)

E(level) [†]	XREF	Comments		
		half the total 3p events); <0.11 (1999Fy01, at 99% confidence limit); the claim of a strong β 3p branch by 1992Ba01 with $\%\beta^+$ 3p=2.1 <i>10</i> is not supported by other measurements. 1998Ax02 pointed out that a proton peak assigned to β^+ 3p in 1992Ba01 was observed as a single-proton transition in their work. Note that the total $\%\beta^+p+\%\beta^+2p+\%\beta^+3p=77.27$ <i>36</i> , while summed proton branching ratio is 62% 6, of all observed and resolved proton branches which are assigned to proton decay of excited states in ³¹ Cl from data in 2000Fy01. The missing delayed proton branch of 15% <i>9</i> is attributed by 2000Fy01 to unresolved one or two-proton decays. J^{π} : spin from β -recoil energy shift (2002Fy01,1999Th09,1998Ax01); parity from log <i>ft</i> =4.9 to 3/2 ⁺ g.s. of ³¹ Cl		
		$T_{1/2}$: weighted average of 15.1 ms 3 (2014Ko17), 14.1 ms 7 (2000Fy01), 15.1 ms +13-11 (1992Ba01), and 15 ms 3 (1987Bo36). Others: 16.5 ms 40 (1969Kl08); 17.7 ms 10 (1972Kl04) is discrepant.		
950 <i>50</i>	Α			
1580? 60	Α			
2120 70	Α			
2.62×10^3 13	Α			
3.56×10 ³ 15	Α			
$4.2 \times 10^3 2$	Α			
Х	A	E(level): a continuum region of ³¹ Ar excitations above 5 MeV inferred based on observed 1p transitions in a broad range of energy probably feeding the 3.0 MeV 2 level in ³⁰ Cl (2018Mu18).		

 † Excited levels from $^{9}\text{Be}(^{31}\text{Ar},^{31}\text{Ar}')$ (2018Mu18).