¹H(³⁰Mg,P):IAR 2014Im02

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022					

Dataset adapted from compiled dataset from 2014Im02 in the XUNDL database by M.S. Basunia (LBNL), Oct 20, 2014. Includes ¹²C(³⁰Mg,p) due to the presence of carbon in the target, but contribution from this reaction is found to be negligible (2014Im02).

2014Im02: E=2.92 MeV/nucleon ³⁰Mg beam was produced by bombarding 1.4-GeV protons on Uranium Carbide (UC) target and separated by the ISOLDE facility at CERN. Target was 5.6 mg/cm² thick polyethylene. Outgoing protons were detected by two layers of Si detectors (FWHM=80 keV). Measured $\sigma(E_p)$. Deduced resonance energy E_R , L-transfer, Γ_p , and spectroscopic factor from R-matrix analysis. Studied ³¹Mg g.s. and first two excited states through their isobaric analog resonances (IAR) in ³¹Al. Comparisons of spectroscopic factors with shell-model calculations.

Determination of structural differences between ³⁰Mg and ³¹Mg, nuclei at the boundary of the 'island of inversion' through the study of IAR (in ³¹Al) of low-lying states in ³¹Mg (2014Im02).

³¹Al Levels

E(level) [†]	J ^π @	Γ@	L	S#	Comments
15804 [‡] 5	1/2+	15 keV 8	0‡	0.07 8	 Γ_p=13 keV 5 (2014Im02) E(level): IAR of ³¹Mg ground state, J^π=1/2⁺. Quenched spectroscopic factor suggests drastic change in shell structures of ³¹Mg and ³⁰Mg. Measured E_R=2446 keV 4 (stat) (2014Im02). S: from 0.07 3(stat)7(syst) (2014Im02).
15867 [‡] 3	3/2+	1.3 keV <i>13</i>	2 [‡]	0.10 11	$\Gamma_{\rm p}$ =1.3 keV 5 (2014Im02) E(level): IAR of first excited state in ³¹ Mg at 50 keV, J^{π} =3/2 ⁺ . E _{ex} (in ³¹ Mg)=63 keV 4 (2014Im02) from energy difference of 2509- and 2446-keV proton resonances with only the statistical uncertainties, which is not in good agreement with the adopted E(level)=50 keV. Note that the 2446- and 2509-keV resonances are unresolved. Consideration of systematic uncertainties in resonance energies may resolve the discrepancy. Quenched spectroscopic factor suggests drastic change in shell structures of ³¹ Mg and ³⁰ Mg
16026 <i>4</i>	(3/2)-	109 keV 2	1	0.68 20	Measured $E_R = 2509$ keV 4 (stat) (2014Im02). S: from 0.10 4(stat)10(syst) (2014Im02). $\Gamma_p = 79$ keV 4 (2014Im02) E(level): IAR of second excited state in ³¹ Mg at 221 keV, $J^{\pi} = (3/2)^{-}$. $E_{ex}(in {}^{31}Mg) = 222$ keV 5 (2014Im02) from energy difference of 2668- and 2446-keV proton resonances with only the statistical uncertainties. Measured $E_R = 2668$ keV 3 (stat) (2014Im02). Large spectroscopic factor indicates similar shell structure of ${}^{31}Mg$ and ${}^{30}Mg$. S: from 0.68 4(stat)20(syst) (2014Im02).

[†] Deduced by evaluators from $E_R+S(p)({}^{31}Al)$, with $S(p)=13358.3\ 26\ (2021Wa16)$. Resonance energies were obtained from R-matrix analysis of excitation functions of the proton elastic scattering. The three resonances (IARs) observed here correspond to parent states at 0, 50 and 221 keV in ${}^{31}Mg$.

[±] 2446- and 2509-keV proton resonances are unresolved as shown in figure 2 of 2014Im02. Choice of values given here is based on R-matrix analysis and minimum χ^2 using MINUIT computer code. Final values are listed in column 9 of table I in 2014Im02.

[#] From R-matrix analysis of the excitation functions of the proton elastic scattering.

^(a) From R-Matrix analysis in 2014Im02. Identification as IAR of states in ³¹Mg is also used for J^{π} assignments. For first excited state, consideration of a 7/2⁻ gave a somewhat higher χ^2 than 3/2⁺.