30 Al β^- decay 1974Al09,1974Kl07

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024

Parent: ³⁰Al: E=0; $J^{\pi}=3^+$; $T_{1/2}=3.62$ s 6; $Q(\beta^-)=8568.8$ 19; % β^- decay=100

 30 Al-J^{π},T_{1/2}: from ³⁰Al Adopted Levels.

 30 Al-Q(β^{-}): from 2021Wa16.

1974A109: ³⁰Al was produced in the ¹⁸O(¹⁸O, α pn), E=42 MeV, reaction at one of the Brookhaven MP tandem Van de Graaff accelerators. Ge(Li) detector; measured $E\gamma$, $I\gamma$.

1974K107: ³⁰Al was produced in the ³⁰Si(n,p), E=14.5 MeV, reaction; Ge(Li) detector; Measured E γ , I γ . 1961Ro12: ³⁰Al was produced in the ³⁰Si(n,p), E \approx 24 MeV neutron from ⁷Li(d,n) reaction with 9.7-MeV external deuteron beam from the Purdue University 37-in. cyclotron. Detectors: NaI(Tl) and plastic phosphor coupled with photomultiplier tube. Measured $E\gamma$, $E_{\beta,end}$ =5.05 MeV 25, deduced β feeding to the 1st and 2nd excited states.

³⁰Si Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}
0	0^{+}	stable
2235.326 19	2+	236 fs 12
3498.49 <i>3</i>	2+	61 fs 6
3769.49 4	1^{+}	42 fs 9
4810.22 12	2+	131 fs <i>14</i>
4830.85 5	3+	87 fs 14
5231.1 <i>3</i>	3+	
5278.73 10	4+	96 fs 10
5614.03 [‡] <i>14</i>	2^{+}	<14 fs
5950.6 [‡] 5	4+	16 fs 8

[†] From a least squares fit to the γ -ray energies, assuming $\Delta E=0.5$ keV for missing uncertinty.

[‡] Level considered for reported beta feeding in 1974K107.

[#] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments
(2618.2 22)	5950.6	0.16 [‡] 5	5.92 14	av $E\beta = 1120.3 \ 67$ I β^- : from 1974K107.
(2954.8 22)	5614.03	$0.30^{\ddagger} 6$	5.87 9	av $E\beta$ =1282.7 68 I β^{-} : from 1974K107.
(3337.7 22)	5231.1	2.58 21	5.17 4	av E β =1466.5 68 I β ⁻ : weighted average of 3.0 3 (1974K107) and 2.47 15 (1974A109). γ -transition intensity balance yields I $_{\beta}$ =2.27 13, statistically in agreement with the adopted I $_{\beta}$ =2.58 21.
(3738.0 22)	4830.85	6.65 <i>16</i>	4.985 17	av $E\beta$ =1660.6 68 I β ⁻ : weighted average of 6.3 6 (1974K107) and 6.67 16 (1974A109). γ -transition intensity balance yields I $_{\beta}$ =6.6 3, statistically in agreement with the adopted I $_{\beta}$ =6.65 16.
(3758.6 22)	4810.22	5.77 22	5.060 19	av $E\beta$ =1670.9 68 I β ⁻ : weighted average of 5.5 6 (1974K107) and 5.81 23 (1974A109). γ -transition intensity balance yields I $_{\beta}$ =5.1 5, statistically in agreement with the adopted I $_{\beta}$ =5.77 22.
(5070.3 22)	3498.49	67.9 11	4.578 12	av $E\beta$ =2311.1 69 $I\beta^-$: weighted average of 68.2 15 (1974Kl07) and 67.5 16 (1974Al09). From the measured β spectra and available data, 1961Ro12 estimated a β feeding branch to

Continued on next page (footnotes at end of table)

30 Al β^- decay 1974A109,1974K107 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-†#}	Log <i>ft</i>	Comments
(6333.5 22)	2235.326	17.2 9	5.619 25	this level to be 83%. γ -transition intensity balance yields $I_{\beta}=70.2$, statistically in agreement with the adopted $I_{\beta}=67.9.11$. av $E\beta=2931.8.69$ $I\beta^-$: weighted average of 16.6 <i>14</i> (1974Kl07) and 17.6 <i>12</i> (1974Al09). From the measured β spectra and available data, 1961Ro12 estimated a β feeding branch to this level to be 16%. γ -transition intensity balance yields $I_{\beta}=38.9$, indicates missing γ feeding to this level from higher lying levels.

[†] Based on the measured β spectra and deduced values from E γ , I γ in 1961Ro12, 1974Kl07, and 1974Al09. Intensity balance of γ transition at the 1st excited level indicates that feeding from higher lying levels is missing. [‡] From 1974Kl07. For missing and weaker γ transitions, authors estimated β feeding considering E γ and I γ from the literature. [#] Absolute intensity per 100 decays.

$\gamma(^{30}\text{Si})$

Iy normalization: from Σ Iy(1+ α) to g.s.=100, assuming no beta feeding to the g.s.

ω

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{b}	α^{c}	Comments
400.2 4	0.11 <i>I</i>	5231.1	3+	4830.85	3+	[M1]		1.43×10 ⁻⁴ 2	%I γ =0.07 <i>I</i> α (K)=0.0001331 <i>19</i> ; α (L)=9.53×10 ⁻⁶ <i>14</i> ; α (M)=6.27×10 ⁻⁷ <i>9</i> I $_{\gamma}$: deduced by evaluators with respect to I γ (1732.3)=2.87 <i>18</i> and the branching ratio in the adopted dataset
421.0 5	0.15 5	5231.1	3+	4810.22	2+	[M1]		1.28×10 ⁻⁴ 2	%I γ =0.10 3 α (K)=0.0001192 17; α (L)=8.54×10 ⁻⁶ 12; α (M)=5.62×10 ⁻⁷ 8 E $_{\gamma}$: γ not listed in 1974A109. I $_{\gamma}$: deduced by evaluators with respect to I γ (1732.3)=2.87 18 and the branching ratio in the adopted dataset.
671 ^{&}	0.0011 ^{&} 6	5950.6	4+	5278.73	4+				%Iγ=0.0007 <i>4</i>
719 <mark>&</mark>	0.0007 ^{&} 3	5950.6	4+	5231.1	3+				%Iγ=0.0005 2
783 <mark>&</mark>	0.015 ^{&} 6	5614.03	2+	4830.85	3+	M1+E2	+0.20 11		%Iy=0.010 4
804 <mark>&</mark>	0.005 ^{&} 3	5614.03	2^{+}	4810.22	2^{+}				%Iγ=0.003 2
1039 [@]	0.3 1	4810.22	2+	3769.49	1+				% I γ =0.2 <i>I</i> I $_{\gamma}$: deduced by evaluators with respect to I γ (4810)=3.27 26 and the branching ratio in the adopted dataset.
1120 <mark>&</mark>	0.0038 ^{&} 15	5950.6	4+	4830.85	3+				%Iy=0.0025 <i>10</i>
1263.13 <i>3</i>	62.4 19	3498.49	2+	2235.326	2+	M1+E2	+0.18 6	2.90×10 ⁻⁵ 5	%1 γ =40.6 <i>14</i> α (K)=1.359×10 ⁻⁵ <i>21</i> ; α (L)=9.70×10 ⁻⁷ <i>15</i> ; α (M)=6.39×10 ⁻⁸ <i>10</i> α (IPF)=1.438×10 ⁻⁵ <i>26</i> E _{γ} : from 1974A109. I _{γ} : weighted average of 53 <i>2</i> (1974K107) and 62.4 <i>19</i> (1974A109).
1311.80 <i>14</i>	2.9 4	4810.22	2+	3498.49	2+	M1+E2	-0.17 6	3.58×10 ⁻⁵ 6	%Iγ=1.9 3 α(K)=1.268×10 ⁻⁵ 19; $α$ (L)=9.06×10 ⁻⁷ 14; $α$ (M)=5.97×10 ⁻⁸ 9 α(IPF)=2.22×10 ⁻⁵ 4 E _γ : other: 1311.5 6 (1974A109). I _γ : deduced by evaluators with respect to Iγ(4810)=3.27 26 and the branching ratio in the adopted dataset. Other: 3.94 19 – deduced value in 1974A109 (see Tables III and I) based on adopted data in 1973EnVA.
1332.48 16	1.43 14	4830.85	3+	3498.49	2+	M1+E2	+0.7 +6-4	4.4×10 ⁻⁵ 5	% $I\gamma$ =0.93 9 α (K)=1.33×10 ⁻⁵ 10; α (L)=9.5×10 ⁻⁷ 7; α (M)=6.3×10 ⁻⁸ 5 α (IPF)=2.93×10 ⁻⁵ 35 E_{γ} : other: 1331.9 10 (1974A109).

 $^{30}_{14}{
m Si}_{16}$ -3

						30	Al β^- decay	y 1974Al09,1 9	074Kl07 (continu	(ed)
								$\gamma(^{30}\text{Si})$ (contin	ued)	
	${\rm E_{\gamma}}^{\dagger}$	I_{γ} #d	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
	1534.12 4	<0.25	3769.49	1+	2235.326	2+	M1+E2	-0.09 4	8.40×10 ⁻⁵ 12	% Iy < 0.16 $\alpha(K) = 9.60 \times 10^{-6} \ 14; \ \alpha(L) = 6.85 \times 10^{-7} \ 10; \ \alpha(M) = 4.52 \times 10^{-8} \ 6 \ (M) = 4.52 \times 10^{-8} \ M = 4.52 $
	1732.3 8	2.87 18	5231.1	3+	3498.49	2+	M1+E2	+0.12 6	1.49×10 ⁻⁴ 2	$\alpha(\text{IPF})=7.37\times10^{-5} II$ %I γ =1.87 I2 $\alpha(\text{IPF})=0.0001410 22$ $\alpha(\text{K})=7.82\times10^{-6} II; \alpha(\text{L})=5.58\times10^{-7} 8; \alpha(\text{M})=3.68\times10^{-8} 5$ E $_{\gamma}$: other: 1733.0 5 (1974A109). I $_{\gamma}$: In Table III – %branching ≥23 (1974A109).
	1844.40 ^{&} 16	0.24 ^{&} 6	5614.03	2+	3769.49	1+	M1+E2	+0.11 5	1.91×10 ⁻⁴ 3	%Iγ=0.16 4 α (K)=7.04×10 ⁻⁶ 10; α (L)=5.03×10 ⁻⁷ 7; α (M)=3.31×10 ⁻⁸ 5 α (IPF)=0.0001831.27
	2235.23 2	100	2235.326	2+	0	0+	E2		4.36×10 ⁻⁴ 6	%Iγ=65 <i>I</i> $α(M) = 5.65 \times 10^{-6} 8$; $α(L) = 4.03 \times 10^{-7} 6$; $α(M) = 2.66 \times 10^{-8} 4$ α(IPF) = 0.000429 6 E _γ : others: 2235.25 <i>30</i> (1974Al09), (2.26 <i>3</i>) × 10 ³ (1961Ro12).
4	2452.6 ^{&} 13	0.011 ^{&} 5	5950.6	4+	3498.49	2+	(E2)		5.40×10 ⁻⁴ 8	%I γ =0.007 3 α (K)=4.82×10 ⁻⁶ 7; α (L)=3.44×10 ⁻⁷ 5; α (M)=2.268×10 ⁻⁸ 32 α (IPF)=0.000535 8
	2574.8 5	1.48 11	4810.22	2+	2235.326	2+	M1+E2	-0.52 11	5.13×10 ⁻⁴ 10	% $I\gamma$ =0.96 7 $\alpha(K)$ =4.21×10 ⁻⁶ 6; $\alpha(L)$ =3.00×10 ⁻⁷ 4; $\alpha(M)$ =1.979×10 ⁻⁸ 30 $\alpha(IPF)$ =0.000509 10 E _v : other: 2574.0.9 (1974A109)
	2595.39 4	8.91 <i>21</i>	4830.85	3+	2235.326	2+	M1+E2	+0.72 +11-9	5.36×10 ⁻⁴ 10	%Iy=5.79 15 $\alpha(K)=4.19\times10^{-6} 6; \alpha(L)=2.99\times10^{-7} 4; \alpha(M)=1.973\times10^{-8}$ 29 $\alpha(IPF)=0.000531 10$ E a there 2505 1.5 (10744100)
	2995.0 8	0.36 4	5231.1	3+	2235.326	2+				E_{γ} : outer: 2595.1.3 (19/4A109). %I γ =0.23 3 I $_{\gamma}$: deduced by evaluators with respect to I γ (1732.3)=2.87 <i>18</i> and the branching ratio in the adopted dataset. In Table III (1974K107) – %branching \leq 73 and I γ <0.9 with respect to I γ (2235)=100.
	3043.2 1	<0.24	5278.73	4+	2235.326	2^{+}	(E2)		8.07×10 ⁻⁴ 11	%Iy<0.16

 $^{30}_{14}\mathrm{Si}_{16}$ -4

	$^{30}\text{Al}\beta^-$ decay 1974Al09,1974Kl07 (continued)										
$\gamma(^{30}\text{Si})$ (continued)											
	${\rm E_{\gamma}}^{\dagger}$	I_{γ} #d	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\mathbf{b}}$	α^{c}	Comments	
	3378.68 ^{&} 25	0.20 & 6	5614.03	2+	2235.326	2+	(M1+E2)	-0.29 4	8.19×10 ⁻⁴ 12	%I γ =0.12 4 α (K)=2.78×10 ⁻⁶ 4; α (L)=1.983×10 ⁻⁷ 28; α (M)=1.307×10 ⁻⁸ 18 α (IPF)=0.000816 12	
	3498.33 5	50.4 15	3498.49	2+	0	0+	E2		9.94×10 ⁻⁴ 14	%Iγ=33 <i>I</i> α(K)=2.75×10 ⁻⁶ 4; $α$ (L)=1.960×10 ⁻⁷ 27; $α$ (M)=1.292×10 ⁻⁸ <i>I</i> 8 α(IPF)=0.000991 <i>I</i> 4 E _γ : other: (3.52 3) × 10 ³ (1961Ro12). I _γ : weighted average of 47 2 (1974K107) and 50.4 <i>I</i> 5 (1974A109). Other: 64 6 (1961Ro12).	
	3716 [@]	0.23 ^{<i>a</i>} 7	5950.6	4+	2235.326	2+	(E2)		1.07×10 ⁻³ 2	% I γ =0.14 5 α (K)=2.512×10 ⁻⁶ 35; α (L)=1.792×10 ⁻⁷ 25; α (M)=1.181×10 ⁻⁸ 17 α (IPF)=0.001071 15	
	3769.22 [‡] 5	<0.21	3769.49	1+	0	0+	M1		9.49×10 ⁻⁴ 13	% $I_{\gamma} < 0.14$ $\alpha(K) = 2.371 \times 10^{-6} 33; \ \alpha(L) = 1.691 \times 10^{-7} 24; \ \alpha(M) = 1.115 \times 10^{-8} 16$ $\alpha(IPF) = 0.000947 13$ I_{γ} : deduced by the evaluators with respect to $I_{\gamma}(1534.12) = 0.25$ and the branching ratio in the adopted dataset.	
	4810.0 <i>3</i>	3.27 26	4810.22	2+	0	0+	E2		1.43×10 ⁻³ 2	% Iy=2.13 17 $\alpha(K)=1.741\times10^{-6} 24; \ \alpha(L)=1.242\times10^{-7} 17; \ \alpha(M)=8.18\times10^{-9} 11$ $\alpha(IPF)=0.001432 \ 20$	

[†] From the Adopted Gammas, except where otherwise noted.
[‡] Not reported in 1974A109. 1972K107 list from literature. Placement based on the adopted dataset by the evaluators.

[#] From 1974Al09, except where otherwise noted.

[@] From 1974K107.

S

[&] Not reported in 1974K107, only beta feeding to the level is reported. γ from the adopted dataset and the I γ scaled to the adopted γ branching and adjusted for the beta feeding.

^{*a*} Not reported in 1974K107, I γ scaled to the adopted γ branching and adjusted for the beta feeding to the level.

^b From Adopted Gammas.

^c Additional information 1. ^d For absolute intensity per 100 decays, multiply by 0.65 I.

 $^{30}_{14}{\rm Si}_{16}$ -5

30 Al β^- decay 1974Al09,1974Kl07

