31 Ar β^+ p decay 2000Fy01

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. Shamsuzzoha Basunia	NDS 111, 2331 (2010)	30-Jun-2010			

Parent: ³¹Ar: E=0.0; $J^{\pi}=5/2^{(+)}$; $T_{1/2}=14.4$ ms 6; $Q(\beta^+p)=18070$ SY; $\%\beta^+p$ decay=63 7 Others: 1998Ax02, 2002Fy01.

2000Fy01,1998Ax02,2002Fy01: ³¹Ar is obtained from the ISOLDE facility at CERN bombarding CaO target with 1 GeV pulsed protons; 13 Si p-i-n diodes, double-sided Si strip, Si surface barrier and HPGe detectors; identified and measured β-particles, delayed proton energy and intensity, exitation energy of ³⁰S deduced following the two-proton emission.

1982Yo02: ²⁸Si(³He,np):Target: natural Si; Projectile: ³He, E=9.5 MeV; 2 Si surface barrier detector, NE213 detector coupled with photomultiplier tube; measured n-p coin from 70° to 160° in steps of 10°; deduced ³⁰S excitation levels, J^{π} . Most level energies of 1982Yo02 are different than those are reported by 2000Fy01 and data are not listed.

³⁰ S	Levels
-	

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	E(level) [†]	E(level) [†]
0	0^+	1.178 s 5	6064 [‡] 3	7123 [‡] 10
2210.6 5	2^{+}		6202 [‡] 3	7237? ^{‡#} 5
3402.6 5	2^{+}		6280.1 [‡] <i>12</i>	7295 [‡] 14
3666.3 16			6338.6 [‡] 14	7352 [‡] 8
3676 <i>3</i>	1		6541 [‡] 4	7485 <i>4</i>
5136 2			6643? [‡] 3	7598 4
5217.4 7			6762 [‡] 4	7693 4
5389 2			6855 [‡] 4	7924 [‡] 5
5842 4			6927 [‡] 4	
5945? [‡] 3			7078 [‡] 7	

[†] Deduced following the ³¹Ar β^+ p decay, except otherwise noted. [‡] Following two-proton decay of ³¹Ar β^+ decay (2000Fy01).

[#] Not adopted.

$\gamma(^{30}S)$

Eγ	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}
1192 2211	3402.6 2210.6	$\frac{2^{+}}{2^{+}}$	2210.6 0	$\frac{2^{+}}{0^{+}}$

Delayed Protons (³⁰S)

E(p) [†]	E(³⁰ S)	I(p) ^{†&}	E(³¹ Cl)	E(p) [†]	E(³⁰ S)	I(p) [†] &	E(³¹ Cl)
446 ^{#} 15	0	0.49 [#] 16	747	1504 2	2210.6	6.2 2	4055
754 [#] 15	2210.6	3.0 [#] 3	3265	1641 ^{#a} 8	2210.6	3.0 [#] 6	4192
974 ^{#a} 15	0	1.4 [#] 2	1292	1643 2	3402.6	2.88 14	5390
1131 [‡] 5	5217.4	2.7 [‡] 16	6662	1819 [‡] 3	5217.4	3.0 [‡] 4	7384
1133 ^{#a} 15	0	2.0 [#] 4	1456	1870 [‡] 3	3402.6	$0.8^{\ddagger} 2$	5626
1211 4	5136	1.7 5	6677	1923 [‡] <i>3</i>	5217.4	0.44 [‡] 14	7494
1289 [#] 9	2210.6	0.95 [#] 20	3824	2008 2	3402.6	10.0 2	5768
1300 [‡] <i>13</i>	5217.4	0.7 [‡] 11	6841	2084 2	0	100.0 6	2444
1416 2	0	34.0 3	1754	2253 2	0	4.0 3	2619

Continued on next page (footnotes at end of table)

31 Ar β^+ p decay	2000Fy01	(continued)
------------------------------	----------	-------------

E(p) [†]	E(³⁰ S)	I(p) ^{†&}	E(³¹ Cl)	E(p) [†]	E(³⁰ S)	I(p) ^{†&}	E(³¹ Cl)
2327 [‡] 4	0	5.1 [‡] 4	2695	4624 [#] 9	0	0.7 [#] 2	5064
2866 [#] 20	0	1.7 [#] 9	3265	4730 [‡] 5	2210.6	1.68 [‡] 18	7390
2881 3	3402.6	0.99 13	6670	4743 [#] 9	3676	1.7 [#] 3	8868
3020 [‡] 3	2210.6	1.08 [‡] 14	5623	5276 5	0	17.6 <i>3</i>	5743
3153 [‡] 4	2210.6	0.44 [‡] 10	5760	5686 [#] 9	0	0.31 [#] 5	6162
3242 [#] 12	3402.6	2.2 [#] 8	7050	5952 [‡] 7	5842	0.19 [‡] 6	12310
3249 [‡] 4	0	1.17 [‡] <i>15</i>	3649	6049 [‡] 9	0	0.51 [‡] 12	6542
3416 [#] 12	0	1.4 [#] 3	3824	6145 [‡] 7	0	0.51 [‡] 12	6642
3432 [‡] 3	3666.3	0.89 [‡] 11	7504	6175 [#] 12	2210.6	2.8 [#] 12	8868
3534 [#] 10	3676	2.4 [#] 4	7617	6386 [‡] 7	5389	0.26 [‡] 5	12310
3561 11	3402.6	3.6 8	7373	6540 [‡] 8	5217.4	0.84 [‡] 11	12310
3634 <i>3</i>	0	6.1 8	4046	6555 [#] 11	0	1.1 [#] 2	7050
3806 [‡] 4	5217.4	0.53 [‡] 13	9455	6950 <i>9</i>	0	0.70 9	7474
3902 [‡] <i>3</i>	2210.6	2.22 [‡] 14	6533	7074 9	0	0.49 7	7602
3903 [#] 9	0	3.5 [#] 6	4319	8095 [@] 12	3666.3	0.55 [@] 14	12313
4030 <i>3</i>	2210.6	7.0 2	6666	8347 15	3402.6	0.51 6	12320
4187 <mark>#</mark> 9	0	2.6 [#] 7	4613	8860 [‡] 19	0	0.22 [‡] 19	9448
4200 [‡] 4	7693	1.09 [‡] 18	12310	9379 [#] 13	0	0.33 [#] 20	9978
4289 [‡] 4	7598	0.31 [‡] 8	12310	9493 [‡] 20	2210.6	0.30 [‡] 4	12313
4386 [#] 12	0	1.2 [#] 2	4818	11657 [@] 25	0	0.23 [@] 11	12313
4389 [‡] 5	7485	0.59 [‡] 11	12310	11858 [‡] 29	0	0.034 [‡] <i>3</i>	12547
4466 [#] 10	0	0.69 [#] 20	4901				

Delayed Protons (continued)

[†] From 2000Fy01, except otherwise noted.
[‡] Reported by 2000Fy01 only.
[#] Reported by 1998Ax02 only.
[@] From 1998Ax02.
[&] For absolute intensity per 100 decays, multiply by 0.26 *3*.
^a Placement of transition in the level scheme is uncertain.

 ${}^{30}_{16}S_{14}^{-3}$

³¹Ar β^+ p decay 2000Fy01

Decay Scheme

I(p) Intensities: Relative I(p)

$\frac{^{31}\text{Ar }\beta^{+}\text{p decay}}{2000\text{Fy01}}$

Decay Scheme (continued)

I(p) Intensities: Relative I(p)

$\frac{^{31}\text{Ar }\beta^{+}\text{p decay}}{2000\text{Fy01}}$

Decay Scheme (continued)

I(p) Intensities: Relative I(p)

