³⁰Ne β⁻ decay 2007Tr08,1999Re16

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024

Parent: ³⁰Ne: E=0; $J^{\pi}=0^+$; $T_{1/2}=7.18$ ms 22; $Q(\beta^-)=1.481\times10^4$ 25; $\%\beta^-$ decay=100 ³⁰Ne- $Q(\beta^-)$: from 2021Wa16.

Other: 2008TrZW.

2007Tr08,2008TrZW: ³⁰Ne was produced by bombarding 140 MeV/nucleon ⁴⁸Ca beam on beryllium target at NSCL; identified by a combination of energy loss and time-of-flight; Beta Counting System and Double-sided Si micro-Strip Detector used to detect high-energy fragments and the subsequent decay products; SeGA array consisting of 16 HPGe detectors; Measured: $E\gamma$, $I\gamma$, fragment- β - γ - γ coin.

1999Re16: ³⁰Ne was produced by bombarding 2.8 GeV ³⁶S beam on Ta target at GANIL; Identified by time-of-flight and energy loss; Measured β - γ coincidence.

³⁰Na Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	2+	45.4 ms 11	
150.62 20	1^{+}	≈347 ps	
516.1 5	(2^{+})	-	J^{π} : from shell model calculations (2007Tr08).
926.0 6	1^{+}		
2113.6 6	1^{+}		

[†] From a least-squares fit to the γ -ray energies.

[‡] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(1.270 \times 10^4 \ 25)$	2113.6	14.0 18	4.40 7	av $E\beta = 6.09 \times 10^3 \ 13$
$(1.388 \times 10^4 \ 25)$	926.0	7.7 12	4.85 8	av E β =6.67×10 ³ 13
$(1.466 \times 10^4 \ 2.5)$	150.62	63 11	4.05 9	av $E\beta = 7.05 \times 10^3 \ l_{3}$

[†] From γ -ray intensity balance at each level deduced using the GTOL code by evaluators.

[‡] Absolute intensity per 100 decays.

$$\gamma(^{30}\text{Na})$$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α #	Comments
150.6 2	78 10	150.62	1+	0 2+	[M1+E2]	0.006 6	α (K)=0.006 5; α (L)=3.5×10 ⁻⁴ 31; α (M)=8.E-6 7 E _{γ} : from 1999Re16. I γ =95 10 (1999Re16).
365.5 5	92	516.1	(2^{+})	150.62 1+	[M1+E2]		
410.0 5	6.3 10	926.0	1^{+}	516.1 (24) [M1+E2]		
775 1	1.4 5	926.0	1^{+}	150.62 1+			
1597 <i>1</i>	51	2113.6	1^{+}	516.1 (24	-)		
1963 <i>1</i>	51	2113.6	1^{+}	150.62 1+			
2114 <i>1</i>	4 1	2113.6	1^{+}	0 2+			

[†] From 2007Tr08, except otherwise noted. E γ , I γ uncertainty: from a private communication to the first author of 2007Tr08 (September 26, 2007).

[‡] Absolute intensity per 100 decays.

30 Ne β^- decay 2007Tr08,1999Re16 (continued)

γ (³⁰Na) (continued)

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

30 Ne β^- decay 2007Tr08,1999Re16

Decay Scheme

³⁰₁₁Na₁₉