Adopted Levels, Gammas

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024					
$Q(\beta^{-})=17356\ 5;\ S(n)=2277\ 9;\ S(p)=1.72$	21×10^4 15; Q(α)=-1.262×10 ⁴ 11	2021Wa16						

 $S(2n)=6680 \ 11, \ S(2p)=3.951E4 \ 12, \ Q(\beta^{-}n)=11016 \ 5 \ (2021Wa16).$

2021Bh12: Inferred indirectly ²⁹Na(n,γ) reaction cross sections through Coulomb dissociation of ³⁰Na at incident projectile energy of 430 MeV/nucleon on a ²⁰⁸Pb target using the FRS-LAND setup at GSI.

Nuclear effective root-mean-square (rms) radius measurement: 3.10 fm 3 and 3.13 fm 4, restricting size and diffuseness parameters, respectively (1998Su07,1997Su04).

2007No13: Production cross sections ~0.1 mb measured in fragmentation of ⁹Be(⁴⁰Ar,X), E=90A MeV.

2012Zh06: Production cross sections ~0.016 mb and ~0.018 mb were measured in fragmentation of ${}^{9}Be({}^{40}Ar,X)$ and ${}^{181}Ta({}^{40}Ar,X)$, E=57 MeV/nucleon, respectively.

In 2006Kh08, 46.97 and 41.00 MeV/A beams of ³⁰Na impinged on a Si target, measured σ =2363 mb 28 and σ =2402 mb 29, respectively, for the Si(³⁰Na,x) reaction and a reduced strong absorption radius of $\langle r_0^2 \rangle$ =1.222 fm² 10 is deduced and used to study the isospin dependence.

Mass measurement: 2006Ga04, 2002To12, 2001Lu17.

³⁰Na Levels

Cross Reference (XREF) Flags

A	³⁰ Ne β^- decay	D	Be(³¹ Na, ³⁰ Na γ)
В	1 H(30 Na, 30 Na' γ),	Е	$Be(^{31}Mg, ^{30}Na\gamma)$
C	Coulomb excitation	F	Be(32 Mg,X γ)

E(level) [†]	J π ‡	T _{1/2}	XREF	Comments
0@	2+	45.4 ms 11	ABCDEF	 %β⁻=100; %β⁻n=30 5; %β⁻2n=1.27 25; %β⁻α=5.5×10⁻⁵ 2 (1983De23) µ=+2.069 2 Q=+0.15 4 J⁷: spin measured by LASER spectroscopy (1978Hu12), parity from shell model calculations (1983Wi08). T_{1/2}: weighted average of 48 ms 2 (1984La03), 50 ms 4 (1999Dl01,2001Pe14 – previous value 48 ms 5 (1997Ta22)), 54 ms 12 and 52.2 ms 36 (1974Ro31 – from β and neutron counting, respectively), 50 ms 3 (1981ThZV – mass spectrometry – their previous value 55 ms 3 (1969Kl08,1972Kl04)), and 44.1 ms 8 – β(t) (2017Ha23). Other: 38.5 ms 66 (2008ReZZ,1995ReZZ). µ: from 2000Ke09. Other value: +2.083 10 (1978Hu12, 2019StZV). N. Stone recommends the 2000Ke09 value by email (dated Mar 8, 2022), upon a private communication, was missed during the work of 2019StZV. Q: value from 2002Pr12 (Coulomb excitation) – spectroscopic quadrupole moment deduced by the evaluators from reported intrinsic quadrupole moment of 51 fm² 15. Others: +0.14 1 (1998KeZY (β-NMR) – value estimated from Figure 3 by the evaluators), 1998KeZY (β-NMR) – value estimated from Figure 3 by the evaluators). Not listed in 2021StZZ – since it was not directly measured (email communication – Mar 8, 2022). %β⁻ n: from 2015Bi05, 1984Gu19. Others: 26 4 (1979De02); 33 5 (1984La03); P_n=47.8 56 (normalized value of 33.2 38 – 1974Ro31). %β⁻ 2n: from 2015Bi05. Others: 1.30 25 and 1.15 25 (1980De26 – from neutron measurement and γ spectroscopy, respectively); P_{2n}/P_n = 0.042 8 (1981JoZV).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³⁰Na Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
150.62 ^{&} 20	1+	≈347 ps	A CDE	F J ^π : strongly populated from 0 ⁺ in ³⁰ Ne $β^-$ decay: log <i>ft</i> 4.05. T _{1/2} : from (³¹ Na, ³⁰ Naγ) (2015Pe09).
337.9 ^a 14			DE	F
360 13			В	
424.0 [@] 18	(3 ⁺)		BCDE	F J^{π} : from comparison of the experimental and shell model calculated level energies (2004Ut03).
509.9 ^a 24			DE	F
516.1 ^{&} 5 758 ^a 4	(2+)		A DE DE	F J^{π} : from shell model calculations (2007Tr08 - ³⁰ Ne β^{-} decay). F
$925.0^{\textcircled{0}}21$	$(4^+)^{\#}$		CDE	F
926.0 6	1+		A	F J^{π} : Log <i>ft</i> =4.85 from 0 ⁺ .
1032.0 ^{&} 16			DE	F
1263.1 ^{&} 22			DE	F
1527 ^a 5			D	F
2113.6 6	1^{+}		A	J^{π} : Log <i>ft</i> =4.40 from 0 ⁺ .

[†] From a least-squares fit to the γ -ray energies. [‡] Based on ³⁰Ne β^- decay feeding from 0⁺ g.s., except otherwise noted. [#] Tentative assignment in 2015Pe09 based on band structure.

[@] Band(A): $K^{\pi} = (2^+)$, 2p2h, g.s. band. [&] Band(B): $K^{\pi} = (1^+)$, 2p2h band.

^{*a*} Band(C): 1p1h/3p3h, π =- band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
150.62	1^{+}	150.6 2	100	0	2+	[M1+E2]	B(M1)(W.u.)= $0.019 + 15-6$ (if pure M1) B(E2)(W.u.)= $3.8 \times 10^3 + 32-13$ exceeds RUL=100.
337.9		187 [‡] 2		150.62	1^{+}		
		338 [‡] 2		0	2^{+}		
360		360 [#] 13	100	0	2^{+}		
424.0	(3 ⁺)	424 [‡] 2	100	0	2^{+}		E_{γ} : Other: 403 keV 18 in (³⁰ Na, ³⁰ Na' γ) (2006El03).
509.9		172 [‡] 2		337.9			
516.1	(2^{+})	365.5 5	100	150.62	1^{+}		
758		248 [‡] 2		509.9			
925.0	(4^{+})	501 ^{‡‡} 2	67 [‡] 7	424.0	(3 ⁺)		
		925 ^{‡‡} 3	100 [‡] 7	0	2^{+}		
926.0	1^{+}	410.0 5	100 16	516.1	(2^{+})		
		775 1	22.8	150.62	1+		
1032.0		516+ 2		516.1	(2^{+})		
		694 [‡] 3		337.9			
		1032 [‡] 3		0	2^{+}		
1263.1		747 [‡] 3		516.1	(2^{+})		
		1263 [‡] 3		0	2+		
1527		769 [@] 3		758			
2113.6	1^{+}	1597 <i>1</i>	100 20	516.1	(2^{+})		

$\gamma(^{30}\text{Na})$

Adopted Levels, Gammas (continued)

 γ (³⁰Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2113.6	1^{+}	1963 <i>1</i>	100 20	150.62	1+
		2114 <i>1</i>	80 20	0	2^{+}

[†] From ³⁰Ne β^- decay, except otherwise noted. [‡] From (³¹Mg,³⁰Na γ). [#] From (³⁰Na,³⁰Na' γ). [@] From (³¹Na,³⁰Na γ).

³⁰₁₁Na₁₉

Adopted Levels, Gammas

