30 Na β^- decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19

	Histor	y	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024

Parent: ³⁰Na: E=0; J^{π}=2⁺; T_{1/2}=45.4 ms *11*; Q(β ⁻)=17356 5; % β ⁻ decay=100

 30 Na-Q(β^{-}): from 2021Wa16.

Others: 2009Sc11, 1979De02, (2014Sh01, 2012Sh29 data are superseded by 2020Ni05).

- 2020Ni05: The ³⁰Na nuclear-spin-polarized beam, E=28 MeV, was produced by fragmentation of uranium carbide (UC_x) traget with 500 MeV protons at the ISAC facility of TRIUMF following collinear optical pumping at the polarizer and was delivered and stopped in vacuum on a 20– μ m-thick Pt foil at the experimental setup for the β - γ spectroscopy. The polarization of ³⁰Na was 31% *1*. Eight sets of detector telescopes consisting of a coaxial HPGe and thin plastic scintillators(s). Six other telescopes were placed in a plane perpendicular to the polarization direction. Measured E γ , I γ , spatial asymmetry of β in coin with γ rays. Deduced level scheme, spin, parity.
- 1989Ba07: ³⁰Na was produced bombarding a uranium carbide target with 600 MeV protons from the CERN synchrocyclotron, mass separated in the ISOLDE facility; NE213 scintillator, 2 HPGe detectors and one neutron detector; Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, γ -n coin.
- 1984Gu19: ³⁰Na was produced in the fragmentation of iridium target by 10 GeV protons from the CERN synchrotron, recoiled fragments were thermalized, ionized and mass-separated; Ge(Li) detector; measured E γ , β - $\gamma\gamma$ coin, absolute I γ .
- 2009Sc11: ³⁰Na source was produced by bombarding a UC_x/graphite target with 1.4 GeV protons at CERN PS Booster facility; Mass separation of the reaction products was done by the ISOLDE; Measured β (ce) coin using a liquid nitrogen cooled Si(Li) detector in conjunction with a (mini-orange) magnetic transport system. The γ -rays following β^- decay were measured using a Ge detector.
- 1979De02: Measured and reported $E\gamma$ and %I γ for 7 transitions, 4 of which are listed in the comments. 336.3, 1041.2, and 1510.7 γ are not reported/confirmed in the later works.

Level scheme is from 2020Ni05.

In 1989Ba07, excited level at 4414.7, $J^{\pi} = (1,2)^+$, is proposed with 947.0 and 4414.4 depopulating γ -rays. In 2020Ni05, the 4414.9 γ (most likely the same as 4414.4 γ) is reassigned from 5898-keV level based on coincidence measurements and the other E γ is not reported. Evaluators omit the 4414-keV level in the dataset.

³⁰Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0@	0^{+}	319 ms 6	$T_{1/2}$: from the Adopted Levels.
1483.07 [@] 11	2+	1.53 ps 20	J^{π} , $T_{1/2}$: from the Adopted Levels.
1788.04 ^{&} 16	0^{+}	3.8 ns 4	J ^{π} : from angular correlation measurements of 305 γ and 1483 γ in 2020Ni05, 1788 γ E0 to 0 ⁺ g.s.
			$T_{1/2}$: from the Adopted Levels. In 2020Ni05 – 3.6 ns 4 measured by the centroid shift method.
2468.02 ^{&} 12	(2^+)	<5 ps	$J^{\pi}, T_{1/2}$: from the Adopted Levels.
3303.79 ^d 23	(1,2,3)		
3381.52 [@] 19	(4^{+})		
3461.44 ^d 14	(2)		
3462.78 ^d 16	(1,2)		
3542.59 ^a 14	(2^{+})		J^{π} : in 2020Ni05 $J^{\pi} = (2^+)$ is proposed based on the feeding from (3^+) at 4695.
4259.53 ^d 25	(2,3,4)		
4297.77 <mark>d</mark> 20	$(1,2^+)$		J^{π} : from Adopted Levels. Other: (1,2) in 1984Gu19.
4683.62 ^d 19	(2,3,4)		
4694.71 ^{<i>a</i>} 21	(3 ⁺) [#]		Asymmetry parameter A=0.4 3 (2020Ni05).

Continued on next page (footnotes at end of table)

30 Na β^- decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19 (continued)

³⁰Mg Levels (continued)

E(level) [†]	J ^{π‡}	Comments
4783.25 ^d 22	(2,3,4)	
4967.37 ^b 12	1 ^{+#}	Asymmetry parameter $A=-1.01$ 7 (2020Ni05).
5022.47 [°] 15	1 ^{+#}	Asymmetry parameter $A = -0.94 \ 9 \ (2020 \text{Ni}05)$.
5095.11 [°] 13	2+ #	Asymmetry parameter $A = -0.28 \ 9 \ (2020 \text{Ni05})$.
5413.53 ^b 12	2+ #	Asymmetry parameter $A = -0.34 \ 8 \ (2020 \text{Ni05})$.
5619.13 ^d 19	$(1^+, 2^+)^{\#}$	Asymmetry parameter $A = -0.9 4$ (2020Ni05).
5898.38 ^d 18	1+ #	Asymmetry parameter $A = -0.9 2$ (2020Ni05).
5921.8 ^d 4		
6066.24 ^d 15	3+ #	Asymmetry parameter A=0.8 2 (2020Ni05).
6340+x		Additional information 1.
		E(level): from S(n)=6340 1 (30 Mg) and x<11016 5 [from Q(β^{-}) (30 Na)=17356 5-S(n)(30 Mg) (2021Wa16)].
10004+y		Additional information 2.
		E(level): from S(2n)=10004.1 <i>13</i> (30 Mg) and y<7352 <i>5</i> [from Q(β^-) (30 Na)=17356 <i>5</i> -S(2n)(30 Mg) (2021Wa16)].

[†] From a least-squares fit to the γ -ray energies, $\Delta E=1$ keV assumed, if missing.

[‡] From Adopted Levels.

[#] Based on allowed transition from 2⁺ g.s. in ³⁰Na β^- decay and β asymmetry measurements for polarized ³⁰Na. Asymmetry parameter (A) values of -1.0, -0.33, and +0.67 were expected for spins 1⁺, 2⁺, and 3⁺, respectively (2020Ni05).

[@] Band(A): g.s. band.

& Band(B): Deformed band.

^{*a*} Band(C): γ -vibrational band.

^b Collective structure.

^c Spherical structure.

^d Other structure.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(4 \times 10^{3 \ddagger 4})$	10004+y	1.27 25		$I\beta^-$: %β-2n=1.27 25 (from ³⁰ Na Adopted Levels).
$(6 \times 10^{3} \text{ f} 6)$	6340+x	30 5		$I\beta^-$: $\%\beta$ -n=30 5 (from ³⁰ Na Adopted Levels).
(11290 5)	6066.24	3.6 4	5.56 5	av $E\beta = 5387.0\ 25$
(11434 5)	5921.8	0.49 16	6.45 15	av E β =5458.3 25
(11458 5)	5898.38	2.5 5	5.74 9	av E β =5469.9 25
(11737 5)	5619.13	0.95 18	6.21 9	av E β =5607.9 25
(11943 5)	5413.53	10.0 9	5.23 4	av $E\beta = 5709.5\ 25$
(12261 5)	5095.11	9.5 10	5.31 5	av E β =5866.9 25
(12334 5)	5022.47	8.0 8	5.39 5	av E β =5902.8 25
(12389 5)	4967.37	22.1 19	4.96 4	av $E\beta = 5930.0\ 25$
(12573 5)	4783.25	< 0.11	>7.3	av $E\beta = 6021.0\ 25$
(12661 5)	4694.71	2.5 3	5.95 6	av E β =6064.7 25
(12672 5)	4683.62	0.50 9	6.65 8	av E β =6070.2 25
(13097 5)	4259.53	0.26 8	7.00 14	av E β =6279.7 25
(13813 5)	3542.59	< 0.6	>6.8	av E β =6633.8 25
(13893 5)	3462.78	1.6 6	6.34 17	av E β =6673.2 25
(13895 5)	3461.44	2.5 15	6.1 <i>3</i>	av $E\beta = 6673.9\ 25$
(13975 5)	3381.52	< 0.2	>7.3	av E β =6713.3 25
(14888 5)	2468.02	2.0 6	6.39 <i>13</i>	av Eβ=7164.2 25
(15873 5)	1483.07	3.3 18	6.30 24	av $E\beta = 7650.1\ 25$

Continued on next page (footnotes at end of table)

 $^{30}\mathrm{Na}\,\beta^-$ decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19 (continued)

 β^- radiations (continued)

[†] Absolute intensity per 100 decays. [‡] Estimated for a range of levels.

				³⁰ Na	β^- decay	(45.4 ms	s) 2020Ni05,1 9	089Ba07,1984Gu19 (continued)
							γ (³⁰ Mg)	
lγ normalizat	ion: from ΣI	$(\gamma + ce)$ to (g	g.s.)=69 5.	%β ⁻ n=30) 5; %β ⁻ 2	2n=1.27	25.	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult.	α ^{&}	Comments
305.1 2	13.3 14	1788.04	0+	1483.07	2+	[E2]	9.20×10 ⁻⁴ 13	 %Iγ=6.2 8 α(K)=0.000862 12; α(L)=5.55×10⁻⁵ 8; α(M)=2.042×10⁻⁶ 29 E_γ: weighted average of 305.4 5 (1984Gu19), 305.6 3 (1989Ba07), 304.6 10 (1979De02), 304.8 2 (2020Ni05). I_γ: unweighted average of 12.5 13 (1984Gu19), 11.4 7 (1989Ba07), 16.1 12 (2020Ni05). Other: %Iγ=3.0 5 (1979De02).
669.5 <i>4</i> 724.4 <i>4</i> 797.4 <i>3</i> 955.7 <i>2</i>	0.34 <i>12</i> 0.22 8 0.95 9 1.34 <i>12</i>	4967.37 5022.47 5095.11 4259.53	1^+ 1^+ 2^+ (2,3,4)	4297.77 4297.77 4297.77 3303.79	$(1,2^+)$ $(1,2^+)$ $(1,2^+)$ (1,2,3)			With: assumed from level scheme in 2009Sc11. %Iy=0.16 6 %Iy=0.10 4 %Iy=0.44 5 %Iy=0.62 7
985.0* 2	14.5 8	2468.02	(2*)	1483.07	2*			%1γ=6.7 6 E _γ : weighted average of 985.4 9 (1984Gu19), 985.1 4 (1989Ba07), 985.4 10 (1979De02), 984.9 2 (2020Ni05). I _γ : weighted average of 14.2 8 (1984Gu19), 14.5 9 (1989Ba07), 14.9 12 (2020Ni05). Other: %Iγ=12.0 5 (1979De02).
994.7 <i>3</i> 1152.0 <i>4</i> 1221.9 <i>3</i> 1283.0 <i>2</i> 1382.3 <i>2</i> 1479.5 5	0.41 8 1.89 16 0.47 9 0.95 12 0.38 6 0.29 17	3462.78 4694.71 4683.62 6066.24 6066.24 4783.25	(1,2) (3+) (2,3,4) 3+ 3+ (2,3,4)	2468.02 3542.59 3461.44 4783.25 4683.62 3303.79	$(2^{+}) (2^{+}) (2) (2,3,4) (2,3,4) (1,2,3)$			$\%$ [γ =0.19 4 $\%$ [γ =0.88 10 $\%$] γ =0.22 4 $\%$] γ =0.44 6 $\%$] γ =0.176 31 $\%$] γ =0.13 8
1483.1 2	100	1483.07	2 ⁺	0	(1,2,3) 0 ⁺	E2	9.06×10 ⁻⁵ 13	$%I_{Y}=46.4 \ 34$ $α(K)=7.84\times10^{-6} \ 11; \ α(L)=5.04\times10^{-7} \ 7; \ α(M)=1.866\times10^{-8} \ 26$ $α(IPF)=8.22\times10^{-5} \ 12$ $E_{\gamma}:$ weighted average of 1482.8 5 (1984Gu19), 1483.1 2 (2020Ni05), 1484.2 10 (1979De02). Other: 1482.0 3 (1989Ba07 – possibly doublet considering the nearby 1479.5γ in 2020Ni05). $I_{\gamma}:$ others: $%I_{Y}=74 \ 4 \ (1979De02), \ \%I_{Y}=39 \ 4 \ (2020Ni05).$
1505.9 [‡] 2	8.1 6	4967.37	1+	3461.44	(2)			 %Iγ=3.8 4 E_γ: weighted average of 1505.7 <i>10</i> (1984Gu19), 1505.8 4 (1989Ba07), 1505.9 2 (2020Ni05). I_γ: weighted average of 8.2 7 (1984Gu19), 8.4 6 (1989Ba07), 7.8 6 (2020Ni05).
1552.4 [‡] 2	4.1 4	5095.11	2+	3542.59	(2+)			$\% I\gamma = 1.90 \ 23$ E _y : weighted average of 1551.9 <i>18</i> (1984Gu19), 1552.4 <i>4</i> (1989Ba07),

4

L

			³⁰ Na /	B ⁻ decay	(45.4 ms	s) 2020Ni05	,1989Ba07,1984Gu19 (continued)
						γ (³⁰ Mg) (co	ntinued)
$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	$I_{(\gamma+ce)}^{b}$	Comments
3.1 3	5022.47	1+	3462.78	(1,2)			 1552.4 2 (2020Ni05). I_γ: unweighted average of 4.2 6 (1984Gu19), 4.7 4 (1989Ba07), 3.36 28 (2020Ni05). %I_γ=1.44 <i>I</i>7 E_γ: weighted average of 1560.3 <i>I</i>8 (1984Gu19), 1559.6 4 (1989Ba07), 1559.6 2 (2020Ni05).
1.47 <i>13</i>	5095.11 1788.04	2 ⁺ 0 ⁺	3461.44 0	(2) 0 ⁺	E0	2.0×10 ⁻³ 4	 I_γ: weighted average of 3.2 6 (1984Gu19), 3.6 3 (1989Ba07), 2.78 23 (2020Ni05). %I_γ=0.68 8 Mult.: from 2009Sc11, a monopole strength of ρ²(E0)=0.026 8 is determined from E0(K+L) conversion intensity to the E2 γ-ray intensity and γ-ray
4.2 7	5095.11	2+	3303.79	(1,2,3)			lifetime measurements. $I_{(\gamma+ce)}$: I(E0) determined by 2009Sc11 from I(E0:K+L)(1789)/I γ (306). ρ^{2} (E0)=0.026 8 (2009Sc11). %I γ =1.95 35
							 E_γ: unweighted average of 1789.2 <i>18</i> (1984Gu19), 1788.0 <i>7</i> (1989Ba07), 1791.3 <i>2</i> (2020Ni05). In 1989Ba07, placement from 1790 keV level – unlikely for an E0 transition. I_γ: unweighted average of 5.5 <i>7</i> (1984Gu19), 4.0 <i>6</i> (1989Ba07), 3.21 <i>27</i> (2020Ni05).
0.77 <i>11</i> 5.6 <i>4</i>	6066.24 3303.79	3 ⁺ (1,2,3)	4259.53 1483.07	(2,3,4) 2 ⁺			%Iγ=0.36 6 %Iγ=2.60 27 E _γ : placement in 2020Ni05. Weighted average of 1820.7 9 (1984Gu19), 1820.2 6 (1989Ba07), 1820.6 3 (2020Ni05).
1.27 <i>12</i>	5413.53	2+	3542.59	(2+)			 I_γ: weighted average of 6.2 8 (1984Gu19), 5.4 4 (1989Ba07), 5.8 5 (2020Ni05). %I_γ=0.59 7 E_γ: weighted average of 1871.7 18 (1984Gu19), 1870.7 10 (1989Ba07), 1871.0 2 (2020Ni05). I_γ: weighted average of 1.7 7 (1984Gu19), 1.3 2 (1989Ba07), 1.24 12
2.80 24	3381.52	(4+)	1483.07	2+			(2020Ni05). %Iy=1.30 <i>15</i>
3.9 [#] 6	5413.53	2+	3461.44	(2)			%Iγ=1.81 31 E _γ : weighted average of 1951.5 7 (1989Ba07) and 1952.0 3 (2020Ni05).
22 3	3461.44	(2)	1483.07	2+			 I_γ: unweighted average of 4.5 <i>3</i> (1989Ba07) and 3.3 <i>4</i> (2020Ni05). %I_γ=10.2 <i>I6</i> E_γ: weighted average of 1978.4 <i>9</i> (1984Gu19), 1978.0 <i>6</i> (1989Ba07), 1979.8 <i>10</i> (1979De02), 1978.1 <i>2</i> (2020Ni05). I_γ: unweighted average of 23.8 <i>I6</i> (1984Gu19), 24.7 <i>I5</i> (1989Ba07), 16.3 <i>23</i>
7.0 10	3462.78	(1,2)	1483.07	2+			(2020Ni05). Other: %1 γ =15.0 <i>15</i> (1979De02). %1 γ =3.2 <i>5</i>
	$I_{\gamma}^{\dagger a}$ 3.1 3 1.47 13 4.2 7 4.2 7 0.77 11 5.6 4 1.27 12 2.80 24 3.9 [#] 6 22 3 7.0 10	$I_{\gamma}^{\dagger a}$ $E_i(\text{level})$ 3.1 3 5022.47 1.47 13 5095.11 1.47 13 5095.11 4.2 7 5095.11 0.77 11 6066.24 5.6 4 3303.79 1.27 12 5413.53 2.80 24 3381.52 3.9 [#] 6 5413.53 22 3 3461.44 7.0 10 3462.78	$I_{\gamma}^{\dagger \prime \prime}$ $E_i(\text{level})$ J_i^{π} 3.1 3 5022.47 1 ⁺ 1.47 13 5095.11 2 ⁺ 4.2 7 5095.11 2 ⁺ 0.77 11 6066.24 3 ⁺ 5.6 4 3303.79 (1,2,3) 1.27 12 5413.53 2 ⁺ 2.80 24 3381.52 (4 ⁺) 3.9 [#] 6 5413.53 2 ⁺ 22 3 3461.44 (2) 7.0 10 3462.78 (1,2)	$\frac{3^{0} Na}{i}$ $\frac{I_{y}^{\dagger a}}{3.1 3} = \frac{E_{i}(\text{level})}{5022.47} = \frac{J_{i}^{\pi}}{1^{+}} = \frac{E_{f}}{3462.78}$ $1.47 I3 = \frac{5095.11}{1788.04} = \frac{2^{+}}{0^{+}} = \frac{3461.44}{0}$ $4.2 7 = 5095.11 = 2^{+} = \frac{3461.44}{0}$ $4.2 7 = 5095.11 = 2^{+} = \frac{3303.79}{(1,2,3)} = \frac{4259.53}{1483.07}$ $1.27 I2 = 5413.53 = 2^{+} = \frac{3542.59}{3461.44}$ $22 3 = \frac{3461.44}{22} = \frac{2}{3} = \frac{2}{3461.44} = \frac{2}{2} = \frac{1483.07}{3461.44}$	$\frac{30 \operatorname{Na} \beta^{-} \operatorname{decay}}{1}$ $\frac{I_{\gamma}^{\dagger a}}{3.1 \ 3} = \frac{E_{i}(\operatorname{level})}{5022.47} \frac{J_{i}^{\pi}}{1^{+}} = \frac{E_{f}}{3462.78} \frac{J_{f}^{\pi}}{1.2}$ $1.47 \ 13 5095.11 2^{+} \qquad 3461.44 (2) \\ 0 0^{+}$ $4.2 \ 7 5095.11 2^{+} \qquad 3303.79 (1,2,3)$ $0.77 \ 11 6066.24 3^{+} \\ 5.6 \ 4 \qquad 3303.79 (1,2,3) \qquad 1483.07 2^{+}$ $1.27 \ 12 5413.53 2^{+} \qquad 3542.59 (2^{+})$ $2.80 \ 24 3381.52 (4^{+}) \qquad 1483.07 2^{+} \\ 3.9^{\#} \ 6 \qquad 5413.53 2^{+} \qquad 3461.44 (2)$ $22 \ 3 3461.44 (2) \qquad 1483.07 2^{+} \\ 7.0 \ 10 3462.78 (1,2) \qquad 1483.07 2^{+}$	$\frac{3^{9}\text{Na}\beta^{-}\text{decay}(45.4 \text{ m})}{1^{7}_{i}} = \frac{1}{2} \prod_{f}^{\pi} \frac{1}{2} \frac{1}{2} \prod_{f}^{\pi} \frac{1}{2} \frac$	$\frac{{}_{3} \text{Na} \beta^{-} \operatorname{decay} (45.4 \text{ ms})}{2020 \text{No} 5} \frac{2020 \text{No} 5}{2020 \text{No} 5} \frac{\gamma ({}^{30} \text{Mg}) (\text{cc}}{200 \text{Mg}}) (\text{cc}}{200 \text{Mg}} (\text{cc}})$ $\frac{1}{17} \frac{1}{7} = \frac{1}{17} \frac{1}{7} \frac$

S

 $^{30}_{12}{\rm Mg}_{18}$ -5

L

³⁰Na β⁻ decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19 (continued)

$\gamma(^{30}Mg)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Comments
2059.5.2	1.5.5	3542.59	(2^{+})	1483.07	2^{+}	% Ix=0.70.24
200710 2	110 0	00.12107	(_)	1100107	-	E_{ac} : weighted average of 2059.0 6 (1989Ba07), 2059.5 2 (2020Ni05).
						L_{2} : unweighted average of 2.0 3 (1989Ba07), 0.99 11 (2020Ni05).
2157.6 2	0.85 32	5619.13	$(1^+, 2^+)$	3461.44	(2)	%Iv=0.39 <i>15</i>
2226.6 3	1.10 32	4694.71	(3^+)	2468.02	(2^+)	%17=0.51 15
2458.9 4	0.85 33	5921.8		3462.78	(1.2)	%17=0.39 16
2499.2 2	1.69 15	4967.37	1+	2468.02	(2^+)	%1y=0.78 9
						$E_{\rm av}$: weighted average of 2498.7 10 (1984Gu19), 2497.8 13 (1989Ba07), 2499.3 2 (2020Ni05).
						L_{x} : weighted average of 1.9 6 (1984Gu19), 1.8 2 (1989Ba07), 1.61 15 (2020Ni05).
2605.1 3	1.73 14	6066.24	3+	3461.44	(2)	%Iy=0.80 9
2618.0 5	0.21 6	5921.8		3303.79	(1.2.3)	%1v=0.097 29
2627.1 2	1.94 22	5095.11	2+	2468.02	(2^+)	% v=0.90 12
						E_{γ} : weighted average of 2626.0 13 (1989Ba07) and 2627.1 2 (2020Ni05).
						I_{y} : weighted average of 2.3 3 (1989Ba07), 1.81 18 (2020Ni05).
2684.5 2	2.67 24	6066.24	3+	3381.52	(4^{+})	%Iy=1.24 <i>14</i>
						$E_{y}I_{y}$: other: 2685.6 12, 2.2 8, respectively (1984Gu19).
2945.3 2	1.20 11	5413.53	2+	2468.02	(2^{+})	%Iy=0.56 7
3179.3 2	11.9 9	4967.37	1^{+}	1788.04	0^{+}	% I _Y =5.5 6
						E_{γ} : weighted average of 3179.8 9 (1984Gu19), 3178.8 10 (1989Ba07), 3179.3 2 (2020Ni05).
						I_{γ} : weighted average of 10.5 <i>16</i> (1984Gu19), 12.6 <i>9</i> (1989Ba07), 11.5 <i>10</i> (2020Ni05).
3200.0 <i>3</i>	0.98 14	4683.62	(2,3,4)	1483.07	2+	%Iy=0.45 7
3211.5 <i>3</i>	2.30 29	4694.71	(3^{+})	1483.07	2+	%Iy=1.07 <i>16</i>
3300.1 4	0.61 8	4783.25	(2,3,4)	1483.07	2+	%Iy=0.28 4
3430.2 2	3.0 8	5898.38	1^{+}	2468.02	(2^{+})	%Iy=1.4 4
						E_{γ} : other: 3430.2 <i>12</i> (1984Gu19).
						I_{γ} : weighted average of 2.5 8 (1984Gu19), 3.7 9 (2020Ni05).
3484.1 2	10.7 9	4967.37	1^{+}	1483.07	2+	%Iy=5.0 <i>6</i>
						E_{γ} : weighted average of 3484.6 <i>10</i> (1984Gu19), 3484.0 <i>10</i> (1989Ba07), 3484.1 2 (2020Ni05).
						I _y : weighted average of 9.8 <i>16</i> (1984Gu19), 12.1 <i>8</i> (1989Ba07), 9.6 <i>8</i> (2020Ni05).
3539.4 5	1.8 <i>3</i>	5022.47	1^{+}	1483.07	2+	%Iy=0.83 15
						E_{γ} : weighted average of 3541.1 11 (1989Ba07), 3539.3 3 (2020Ni05). Other: 3542.0 9 (1984Gu19 –
						doublet),
						I_{γ} : weighted average of 1.6 7 (1989Ba07), 1.83 29 (2020Ni05). Other: 6.8 12 (1984Gu19 – doublet).
3542.3 <i>3</i>	6.1 4	3542.59	(2^{+})	0	0^{+}	%Iy=2.83 27
						E_{γ} : weighted average of 3542.0 9 (1984Gu19 – possible doublet), 3541.1 11 (1989Ba07), 3542.4 3
						(2020×10^{-5}) , (2020×10^{-5}) , $(100 \times 10$
3507.0.3	0.00.10	6066 24	2+	2468 02	(2^{+})	r_{2} , weighted average of 0.8 12 (196400119 – possibly doublet), 0.7 / (1969Ba07), 5.5 0 (20201015).
3611.9.3	0.90 10	5005.24	2+	1/83 07	$\frac{(2)}{2^+}$	017 - 0.72 0 0/10 - 0.37 5
5011.7 4	0.01	5075.11	2	1405.07	2	$F_{\rm r}$ weighted average of 3611.0 <i>14</i> (1980Ba07) and 3612.0 <i>4</i> (2020Ni05)
						Ly, weighted average of $0.8.1$ (1980Ba07) $0.74.33$ (2020Ni05).
						1γ . weighted average 01 0.0 <i>I</i> (1707Da07), 0.74 33 (202011103).

 $^{30}_{12}{\rm Mg}_{18}$ -6

						γ (³⁰ Mg) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
3625.2 3	2.88 25	5413.53	2+	1788.04	0^{+}	%Iy=1.34 <i>15</i>
						E_{γ} : weighted average of 3625.8 <i>15</i> (1984Gu19), 3625.0 <i>11</i> (1989Ba07), 3625.2 <i>3</i> (2020Ni05). I_{γ} : weighted average of 1.9 7 (1984Gu19), 3.1 <i>3</i> (1989Ba07), 2.85 <i>25</i> (2020Ni05).
3930.2 2	6.1 5	5413.53	2^{+}	1483.07	2^{+}	%Iy=2.83 31
						E_{γ} : weighted average of 3930.6 <i>12</i> (1984Gu19), 3929.7 <i>13</i> (1989Ba07), 3930.2 <i>2</i> (2020Ni05).
4207.2.4	1 24 25	1207 77	$(1, 2^{+})$	0	0+	I_{γ} : weighted average of 6.3 12 (1984Gu19), 6.6 5 (1989Ba07), 5.6 5 (2020Ni05).
4297.2 4	1.54 55	4297.77	$(1,2^{+})$	1492.07	2^+	$\frac{9}{17} = 0.02 I / 0.02 I /$
4414.9 2	2.49 22	3898.38	1 2+	1403.07	2+	$\gamma_{01} = 1.15$ 15
4585.0 2	0.42 23	0000.24	5	1483.07	2	%IY=0.19 12
^x 4685.4 [@] 18	2.2 ^w 10					$\%$ I γ =1.0 5
4966.8 2	15.0 11	4967.37	1+	0	0^{+}	%Iγ=7.0 7
5022.1 2	12.1 8	5022.47	1+	0	0^{+}	E_{γ} : weighted average of 4967.6 <i>9</i> (1984Gu19), 4966.5 <i>12</i> (1989Ba07), 4966.8 <i>1</i> (2020Ni05). I _{γ} : weighted average of 11.3 <i>25</i> (1984Gu19), 16.2 <i>10</i> (1989Ba07), 14.1 <i>12</i> (2020Ni05). %I _{γ} =5.6 <i>5</i>
						E _v : weighted average of 5021.6 9 (1984Gu19), 5021.7 12 (1989Ba07), 5022.1 2 (2020Ni05).
						$I_{\rm v}$: weighted average of 10.8 23 (1984Gu19), 12.7 8 (1989Ba07), 11.4 10 (2020Ni05).
5094.7 2	7.0 4	5095.11	2+	0	0^{+}	%Iγ=3.25 <i>30</i>
						E _v : weighted average of 5094.6 <i>12</i> (1984Gu19), 5094.3 <i>12</i> (1989Ba07), 5094.7 <i>2</i> (2020Ni05).
						I _v : weighted average of 5.8 14 (1984Gu19), 7.4 5 (1989Ba07), 6.6 6 (2020Ni05).
5413.0 2	6.1 4	5413.53	2^{+}	0	0^{+}	%Iγ=2.83 27
						E _y : weighted average of 5412.4 <i>12</i> (1984Gu19), 5411.8 <i>12</i> (1989Ba07), 5413.0 <i>2</i> (2020Ni05).
						I _γ : weighted average of 4.9 12 (1984Gu19), 6.4 4 (1989Ba07), 5.8 5 (2020Ni05).
5618.6 <i>3</i>	1.20 13	5619.13	$(1^+, 2^+)$	0	0^{+}	%Iγ=0.56 7

 30 Na β^- decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19 (continued)

[†] From 2020Ni05, except where noted otherwise. For $\Delta E\gamma$, systematic uncertainty of 0.2 keV, as stated in the text, combined with the listed statistical uncertainty in Table II.

[‡] From 1989Ba07.

-

[#] From 1989Ba07, not reported in 1984Gu19.

[@] From 1984Gu19, not reported by others.

[&] Additional information 3.

^a For absolute intensity per 100 decays, multiply by 0.464 34.

^b Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

30 Na β^- decay (45.4 ms) 2020Ni05,1989Ba07,1984Gu19

 $^{30}_{12}Mg_{18}$