⁹Be(³¹Ar,³⁰Clp) 2018Mu18

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024	

³¹Ar secondary beam, E=620 MeV/nucleon, was produced by fragmentation of ³⁶Ar primary beam, E=885 MeV/nucleon, on a beryllium target at the SIS-FRS facility at GSI. The secondary target was also ⁹Be. Excited states of ³⁰Cl were populated by inelastic excitation of secondary ³¹Ar beam and identified by registering ²⁹S + p + p correlations. Projectile–like particles were analyzed with the Fragment Separator, protons and heavy recoils were detected with a DSSD array consisting of 4 DSSDs. Measured recoil-p-p correlation. Deduced excited levels of ³⁰Cl along with other isotopes.

³⁰Cl Levels

E(level) [†]	J^{π}	Comments
0	3+	$T_{1/2}$: $T_{1/2} > 100$ ns, estimated in 2018Mu18 based on the Thomas-Ehrman shift, from 3 ⁺ ³⁰ Al g.s. to the 3 ⁺ g.s. in ³⁰ Cl, of E _r = 50-150 keV and conclude that for such low decay energies, the ³⁰ Cl g.s. should live a sufficiently long time to survive the flight through the second achromatic stage of the FRS fragment separator (of ≈ 150 ns).
		$E_{\rm r}({\rm c.m.})=480 {\rm ~keV} {\rm ~20}.$
490 <i>36</i>		$E_{r}(c.m.) = 970 \text{ keV } 30.$
870 54		$E_{r}(c.m.) = 1350 \text{ keV } 50.$
1520 54		$E_r(c.m.)=2000 \text{ keV } 50.$
$2.52 \times 10^3 \ 20$		$E_r(c.m.)=3000 \text{ keV } 200.$

[†] Deduced from the reported resonance energies E_r , listed in comments, in 2018Mu18, and S(p)=-480 keV 20 (2021Wa16).