Adopted Levels

History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024				

 $S(n)=23970 \text{ syst}; S(p)=-760 \text{ syst}; Q(\alpha)=-8030 \text{ syst}$ 2021Wa16

 $\Delta S(n) = 470, \ \Delta S(p) = 130, \ \Delta Q(\alpha) = 630 \ (syst, 2021Wa16).$

 $S(2p) = -3420 \ 80, \ Q(\varepsilon p) = 17880 \ 180 \ (syst, 2021Wa16).$

³⁰Ar identified as an unbound nucleus by 2015Mu13 in one-neutron knockout reaction.

Theoretical nuclear structure calculations: 2014Le03, 2005Pa26, 2004Ge02.

Theory about 2p decay mode: 2004Pf02, 2003Gr04, 2003Gr24.

³⁰Ar Levels

Cross Reference (XREF) Flags

A 31K p decay B 9Be(31Ar,30Ar)

E(level) [†]	J^π	T _{1/2}	XREF	Comments
0	0+	<10 ps	AB	%2p=100 (2015Mu13)
		•		Decays to ²⁸ S ground state.
				From analysis of proton distribution spectrum following 2p decays of ³⁰ Ar,
				2015Mu13 conclude that the process is a combination of the two decay processes:
				"true" or simultaneous 2p emission, and sequential 1p emissions.
				E(level): the ground state is deduced at E(2p)=2.25 MeV $+15-10$ (2015Mu13) implying S(2p)(30 Ar)= -2.25 MeV $+15-10$.
				T _{1/2} : measured by 2015Mu13 from analysis of 28 S+p+p events. Another estimate
				from consideration of different decay mechanisms (sequential as well as simultaneous or "true" 2p decay) gives T _{1/2} =0.1-1 fs (2015Mu13).
$0.53 \times 10^3 22$	(2^{+})		В	%p=100
				J^{π} : from analogy with mirror states in 30 Mg at 1483.14 keV (2018Xu04).
				This state decays by two branches of sequential 1p emissions via the lowest states in
				²⁹ Cl, finally to the ground state and first excited 2 ⁺ state in ²⁸ S (2015Mu13, 2018Xu04).
$\approx 1.5 \times 10^3$	(0^{+})		В	%p=100
				J^{π} : from analogy with mirror states in 30 Mg at 1788.21 keV (2018Xu04).
				This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state and first excited 2 ⁺ state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
$1.78 \times 10^3 \ 17$			В	%p=100
				This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
$3.13\times10^3 12$			В	%p=100
				This state decays by two branches of sequential 1p emissions via the lowest states in
				²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
$5.3 \times 10^3 I$			В	%p=100
				This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
6.8×10 ³ 19			В	%p=100
0.8×10° 19			Б	This state decays by one branch of sequential 1p emission via the lowest states in
				²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
10.1×10 ³ 11			В	%p=100
				This state decays by two branches of sequential 1p emissions via the lowest states in
				²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.

 $^{^{\}dagger}$ From (31 Ar, 30 Ar).