⁹Be(³¹Ar,³⁰Ar) 2018Xu04,2015Mu13

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024				

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster), June 21, 2018.

2018Xu04,2016Xu08: secondary ³¹Ar beam at 620 MeV/nucleon produced in ⁹Be(³⁶Ar,X),E=885 MeV/nucleon primary fragmentation reaction at SIS-GSI accelerator facility. ³¹Ar ions separated by using the fragment separator FRS. Secondary ⁹Be target was 4.8 g/cm² thick. The ³⁰Ar ions were produced in one-neutron knockout reaction. Measured positions and angular correlations of ³⁰Ar in-flight decay products such as coincident two protons (emitted by the decay of ³⁰Ar) and heavy-ion recoil such as ²⁸S (2p-decay daughter of ³⁰Ar). Measured particle spectra, (²⁸Si)p(θ), and analyzed reaction kinematics. ⁹Be(²⁰Mg,¹⁹Mg) reaction, and subsequent 2p-decay of ¹⁹Mg to ¹⁷Ne was used as a reference for determination of detection efficiency, angular and half-life resolutions. Evidence for three-body (²⁸S+p+p) and sequential 1p decays in the decay of ³⁰Ar.
2015Mu13: secondary ³¹Ar beam at 620 MeV/nucleon produced in ⁹Be(³⁶Ar,X),E=885 MeV/nucleon primary fragmentation

- reaction at SIS-GSI accelerator facility. ³¹Ar ions separated by using the fragment separator FRS. Secondary ⁹Be target was 4.8 g/cm² thick. The ³⁰Ar ions were produced in one-neutron knockout reaction. Measured positions and angular correlations of ³⁰Ar in-flight decay products such as coincident two protons (emitted by the decay of ³⁰Ar) and heavy-ion recoil such as ²⁸S (2p-decay daughter of ³⁰Ar). ⁹Be(²⁰Mg, ¹⁹Mg) reaction, and subsequent 2p-decay of ¹⁹Mg to ¹⁷Ne was used as a reference for determination of detection efficiency, angular and half-life resolutions. Evidence for three-body (²⁸S+p+p) and sequential 1p decays in the decay of ³⁰Ar. Observed peaks "A to H" in the ²⁸S+p+p spectrum of Fig. 7 of 2018Xu04 (see also Fig. 2 in 2015Mu13) in the range of 1-15 MeV, and peaks 1-6 in spectrum of Fig. 9 (see also Fig. 3 in 2015Mu13) in the range of 2-7 MeV in the ²⁸S+p double–coin spectrum.
- Observed peaks "D to H" in range of 3.5 to 15 MeV in the ²⁸S+p+p spectrum of Fig. 2c, and peaks #3, #4 and #5 in the range of 2.5-5 MeV in the ²⁸S+p spectrum of Fig. 3 in 2015Mu13 correspond to higher excitations in ³⁰Ar and ²⁹Cl, which the authors relegate to forthcoming publications.

³⁰Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	0^{+}	<10 ps	%2p=100 (2015Mu13)
			Decays by 2p decay to ²⁸ S ground state.
			 From analysis of proton distribution spectrum from 2p decays of ³⁰Ar, 2015Mu13 conclude that the process is a combination of the two decay processes: "true" or simultaneous 2p emission, and sequential 1p emissions; see Fig. 4b and Fig. 7 in 2015Mu13. E(level): the ground state is deduced at E(2p)=2.45 MeV +5-10 from analysis of peak "B" in ²⁸S+p+p spectrum in Fig. 7 of 2018Xu04 (also analyzed as peak #2 in authors' Fig. 9), implying S(2p)(³⁰Ar)=-2.45 MeV +5-10 i.e. ground state is unbound towards 2p emission.
			E(level): the ground state is deduced at E(2p)=2.25 MeV $+15-10$ from analysis of peak "B" in 28 S+p+p spectrum in Figs. 2c and 4b of 2015Mu13, implying S(2p)(30 Ar)= -2.25 MeV $+15-10$ i.e. ground state is unbound towards 2p emission. Note that in 2012Wa38 S(2p)= -2840 530 from systematic trend.
			$T_{1/2}$: from 2015Mu13 based on analysis of ²⁸ S+p+p events. Another estimate from consideration of different decay mechanisms (sequential as well as simultaneous or "true" 2p decay) gives $T_{1/2}$ =0.1-1 fs (2015Mu13).
$0.53 \times 10^3 \ 22$	(2^{+})		%p=100
			E(level): the excited state is 0.45 MeV $+30-14$, deduced from analysis of observed peak "C" with E(2p)=2.9 MeV $+3-1$ in ²⁸ S+p+p spectrum in Fig. 7 of 2018Xu04 (also analyzed as peaks #3 in authors' Fig. 9). Other: 0.7×10^3 (2015Mu13) – the excited state is deduced from analysis of observed peak "A" with E(2p)=1.4 MeV, and peak "C" with E(2p)=2.9 MeV in ²⁸ S+p+p spectrum in Fig. 2c of 2015Mu13, the latter also analyzed as peaks #1 and #2 in authors' Fig. 4c. This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state and first excited 2 ⁺ state in ²⁸ S, as shown in Fig. 5 of 2015Mu13.
			This state decays by two branches of sequential 1p emissions via the lowest states in 29 Cl, finally to the ground state and first excited 2 ⁺ state in 28 S, as shown in Fig. 10 of 2018Xu04.

Continued on next page (footnotes at end of table)

⁹Be(³¹Ar,³⁰Ar) 2018Xu04,2015Mu13 (continued)

³⁰Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
≈1.5×10 ³	(0^{+})	%p=100
		This state decays by two branches of sequential 1p emissions via the lowest states in 29 Cl, finally to the
		ground state and first excited 2^+ state in 2° S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 1.45 MeV +190-20, deduced from analysis of observed peak D1 with $E(2p)=3.9 \text{ MeV} +19-2 \text{ in }^{28}\text{S+p+p}$ spectrum in Fig. 7 of 2018Xu04.
$1.78 \times 10^3 \ 17$		%p=100
		This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 1.75 MeV $+20-14$, deduced from analysis of observed peak "D2" with E(2p)=4.2 MeV $+2-1$ in ²⁸ S+p+p spectrum in Fig. 7 of 2018Xu04.
3.13×10 ³ 12		%p=100
		This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 3.15 MeV +10-14, deduced from analysis of observed peak "E" with $E(2p)=5.6$ MeV 1 in ²⁸ S+p+p spectrum in Fig. 7 of 2018Xu04.
5.3×10 ³ 1		%p=100
		This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 5.45 MeV +80–110, deduced from analysis of observed peak "F1" with $E(2p)=7.9$ MeV +8–11 in ²⁸ S+p+p spectrum in Fig. 7 of 2018Xu04.
6.8×10 ³ 19		%p=100
		This state decays by one branch of sequential 1p emission via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 6.95 MeV + $170-210$, deduced from analysis of observed peak "F2" with E(2p)=9.4 MeV + $17-21$ in ²⁸ S+p+p spectrum in Fig. 7 of 2018Xu04.
10.1×10 ³ 11		%p=100
		This state decays by two branches of sequential 1p emissions via the lowest states in ²⁹ Cl, finally to the ground state in ²⁸ S, as shown in Fig. 10 of 2018Xu04.
		E(level): the excited state is 10.15 MeV +100-120, deduced from analysis of observed peak "G" with $E(2p)=12.6 \text{ MeV} + 10-12 \text{ in } {}^{28}\text{S}+p+p \text{ spectrum in Fig. 7 of } 2018Xu04.$

 † From 2018Xu04. ‡ From analogy with the corresponding mirror states in $^{30}Mg.$