Adopted Levels, Gammas

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024

 $Q(\beta^{-})=8568.8 \ 19$; $S(n)=5727.7 \ 20$; $S(p)=12540.7 \ 20$; $Q(\alpha)=-11428 \ 4 \ 2021Wa16$ $S(2n)=15156.0 \ 19$, $S(2p)=29454 \ 10 \ (2021Wa16)$.

- 2012Zh06: Production cross sections ~1.1 mb and ~1.5 mb were measured in fragmentation of ${}^{9}Be({}^{40}Ar,X)$ and ${}^{181}Ta({}^{40}Ar,X)$, E=57 MeV/nucleon, respectively.
- 2007No13: ³⁰Al production cross section ~3 mb and ~8 mb were measured in ⁴⁰Ar fragmentation reactions of ${}^{9}Be({}^{40}Ar,X)$, E=90A MeV, and ${}^{181}Ta({}^{40}Ar,X)$, E=94A MeV, respectively.
- In 2006Kh08, 57.08 MeV/A beams of ³⁰Al impinged on a Si target, measured σ =2281 mb 515 for the Si(³⁰Al,x) reaction and a reduced strong absorption radius of $\langle r_0^2 \rangle$ =1.2 fm² 3 is deduced and used to study the isospin dependence. 1999Ai02 at E=43.40 MeV/A measured σ =2047 mb 124 and $\langle r_0^2 \rangle$ =1.12 fm² 7.

1997Vo03: Production cross section $\sigma < 0.29$ mb was measured for ³⁰Al production from ⁵⁶Fe+800 MeV protons determined by activation.

1971Ar32: ²³²Th(⁴⁰Ar,X), E=290 MeV; measured fragments isotopic yields.

1963Pe25: Si(n,X), E=14 MeV, measured a half-life of 72.5 s *13* from 2.5-3.5 γ (t). In 1963Pe25, the activity was speculated from ^{30m}Al – not confirmed by any other work. No comparable g.s. or isomeric half-life is present for the isotopes from the ^{28,29,30}Si(n,X), X=p,n', α , reactions. 1971Gr19 searched for the 72.5 s ^{30m}Al state and did not find any.

³⁰Al Levels

Cross Reference (XREF) Flags

			A B C	${}^{30}\text{Mg }\beta^{-} \text{ decay } (319 \text{ ms}) D \qquad {}^{30}\text{Si}(\mu^{-},\nu\gamma)$ ${}^{14}\text{C}({}^{18}\text{O},\text{pn}\gamma) \qquad E \qquad {}^{30}\text{Si}(t,{}^{3}\text{He})$ ${}^{18}\text{O}({}^{14}\text{C},\text{pn}\gamma) \qquad F \qquad {}^{30}\text{Si}({}^{7}\text{Li},{}^{7}\text{Be})$					
E(level) [†]	J^{π}	T _{1/2} <i>a</i>	XREF	Comments					
0	3+	3.62 s 6	ABCDEF	$%β^-=100$ μ=+3.027 4 Q=+0.121 8 Mean-square charge radius $\delta < r^2 > =+0.164 \text{ fm}^2$ 15(stat) 132(syst) 196(syst, for atomic calculation of M and F) (2021He04).					
				J ^{π} : from absence of β^{-} feeding (from J ^{π} =0 ⁺) in ³⁰ Mg β^{-} decay (2008Hi05) and comparison of measured ³⁰ Si(t, ³ He) d σ /d Ω cross sections with DWBA calculation (1987Pe06).					
				T _{1/2} : using limitation of weighted average (LWM): 3.685 s 32 (1974A109 – γ (t) – five spectra of 3 sec each) and 3.56 s 2 (1974K107) (discrepant data). Other: 3.27 s 20 (1961Ro12).					
				2005Ue01, 2007Ue02) – Using β -Nuclear Magnetic Resonance method.					
243.90 8	2+	15 ps 4	ABCDEF	Q: from 2021He04 – collinear laser spectroscopy. Not reported in 2021StZZ. J^{π} : from absence of β^{-} feeding (from $J^{\pi}=0^{+}$) in ${}^{30}Mg \beta^{-}$ decay (2008Hi05), 244 γ M1 to 3 ⁺ , $J^{\pi}=1^{+},2^{+}$ from comparison of measured ${}^{30}Si(t,{}^{3}He)$ cross sections with DWBA calculations (1987Pe06).					
687.66 10	1+	0.7 ps 2	ABCDEF	T _{1/2} : from ³⁰ Mg β- decay. Other: 3 ps <t<sub>1/2<8 ns – (¹⁸O,pnγ). J^π: from β⁻ feeding from 0⁺, log <i>ft</i>=3.92. J^π=1⁺,2⁺ from comparison of measured ³⁰Si(t ³He) cross sections with DWBA calculations (1987Pe06).</t<sub>					
991.0 9	(2,3,4)	97 fs 55	ΒE	XREF: E(1000).					
1118.45 <i>19</i>	3+,2+	83 fs 55	BC EF	XREF: E(1135).					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³⁰Al Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{a}$	XR	EF	Comments		
					J ^{π} : from 875 $\gamma(\theta)$ (¹⁴ C,pn γ)–2008Hi05 suggest 3 ⁺ ,(2 ⁺). 875 γ M1 to 2 ⁺ . 2 ⁺ ,(3 ⁺) in ³⁰ Si(t, ³ He).		
1243.95 10	(4 ⁺) ^{&}	118 fs 55	BC	EF	XREF: E(1256).		
					J^{π} : also (5 ⁺) is possible. 1243.9 γ feeding 3 ⁺ g.s.		
1800.1 3	$(2,3^{+})$		ABC	_	J^{π} : γ to 1^+ and 2^+ states.		
1822 1/			р	E			
2017.1 5	(34)		BC		I^{π} : 2296.9 × D to 3 ⁺ × from (5)		
2303 15	3 <u>4</u> &		20	FF	$XRFF \cdot F(2322)$		
2412.63.14	1+		Α		I^{π} : from β^{-} feeding from $I^{\pi}=0^{+}$ in ³⁰ Mg β^{-} decay, log $t=4.31$.		
2433.8 4	-		В				
2454 [‡] 20				EF	XREF: F(2455).		
2744 [‡] 15				EF	XREF: F(2738).		
2843.3 4			BC				
2902.98 19	(5) [#]		BC	EF	T=2		
					XREF: E(2892).		
					J^{π} : γ -transitions to J=(4), (4 ⁺) states. 4,5 in (t, ³ He) with a possibility of 5 ⁺ based on predictions.		
3164.2 4	1+		Α		J ^{π} : populated from 0 ⁺ in ³⁰ Mg β ⁻ decay, log <i>ft</i> =5.3.		
3362.87 22	1+		Α	F	XREF: F(3396).		
215965			DC	EE	J ^{<i>n</i>} : populated from 0 ⁺ in ³⁰ Mg β^{-} decay, log <i>ft</i> =4.95.		
3705 17			DC	Er			
3898.29 21	(6) [#]		BC	E	J ^π : other: 5 ⁺ based on measured d σ /dΩ and DWBA calculations in (t, ³ He) (1989Cl07).		
4009 10	$(2)^{\&}$			Е			
4201 19				Е			
4463 15				Ε			
4570.7 7 4694 <i>15</i>	(5,6 ⁺)		В	E	J^{π} : γ to (4 ⁺) and γ from J=(7).		
4814 15	3,4 <mark>&</mark>			E			
5358.5 10	(6) [@]		В				
5415.1 <i>14</i>			В	E			
5500.73 23	(7) [#]		BC		XREF: C(5509).		
5553 15				E			
5901 79	(7)#		DC	E	π : 11 20100(12)(180) : 1 : 25157 D((1))		
0414.2 0	(/)"		RC		J ^{**} : assigned by 2010S113 (**O,pn γ) considering 2515.7 γ as D (as reported in (¹⁴ C,pn γ)-2008Hi05) feeding the J=(6) state.		
7240.6 4	(8) [@]		В				
9373.1 14	(9) [@]		В				

[†] From a least squares fit to the γ -ray energies, when applicable.

⁺ From (t,³He). [‡] From (t,³He). [#] Assignment from 2010St13 (¹⁸O,pn γ). [@] Assigned by 2010St13 (¹⁸O,pn γ) on the basis of yrast-feeding and structural systematics. [&] From comparison of measured $d\sigma/d\Omega$ and DWBA calculation in (t,³He). ^a From ¹⁴C(¹⁸O,pn γ), except otherwise noted. DSA method.

				Adopt	ed Level	s, Gammas	s (continued)	
						γ (³⁰ Al)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.@	α &	Comments
243.90	2+	243.86 8	100	0	3+	M1	3.44×10 ⁻⁴ 5	$\alpha(K)=0.000320 \ 4; \ \alpha(L)=2.191\times10^{-5} \\ 31; \ \alpha(M)=1.163\times10^{-6} \ 16 \\ B(M1)(W.u.)=0.101 \ +37-22 \\ E_{\gamma}: weighted average of 243.8 \ 1 \\ from \ ^{30}Mg \ \beta^{-} \ decay, \ 243.90 \ 8 \\ from \ (^{18}O,pn\gamma), \ and \ 243.7 \ 5 \ from \\ (^{14}C,pn\gamma). \\ Mult.: \ from \ 244\gamma(\theta) \ in \\ (^{41}C,pn\gamma) = 0 \\ Mult. \ 480 \ pore Weighted \ 180 \ pore Weighted \ pore Weighted \ 180 \ pore Weighted \ pore We$
								$(1^{4}C,pn\gamma) = 2008H105$, $(1^{6}O,pn\gamma)$, and RUL.
687.66	1+	443.70 8	100.0 [‡] 21	243.90	2+	M1		B(M1)(W.u.)=0.35 +14-8 E _γ : weighted average of 443.8 <i>I</i> from ³⁰ Mg $β^-$ decay, 443.63 8 from (¹⁸ O,pnγ), and 444.1 5 from (¹⁴ C,pnγ).
001.0	(2,3,4)	$687.7^{\ddagger \#} 2$	4.4 [‡] 20	0	$3^+_{3^+}$	[E2] D		B(E2)(W.u.)=40 +26-18
1118.45	(2,3,4) 3 ⁺ ,2 ⁺	874.4 2	100 4	243.90	3 2 ⁺	M1		B(M1)(W.u.)= $0.36 + 39 - 15$ E _{γ} : weighted average of 874.4 <i>1</i> from (¹⁸ O,pn γ) and 875.9 <i>9</i> from (¹⁴ C,pn γ).
		1119.9 <i>10</i>	11.6 27	0	3+			E _y : weighted average of 1119.3 <i>13</i> from (¹⁸ O,pny) and 1120.2 <i>10</i> from (¹⁴ C,pny).
1243.95 1800.1	(4 ⁺) (2,3 ⁺)	1243.9 <i>1</i> 1112.5 <i>4</i> 1554 6 6	100 11 6 100 75	0 687.66 243.90	3+ 1+ 2+	D		E_{γ} : other: 1246.2 8 (¹⁴ C,pn γ).
2015 1		1000 4 4	100 15	243.90	2			1558.0 16 (¹⁴ C,pnγ).
2017.1 2296.64	(3,4)	1329.4 4 1051.7 <i>14</i> 1177.9 <i>4</i> 2296.9 <i>3</i>	2.5 6 17.3 10 100 6	687.66 1243.95 1118.45 0	1^+ (4 ⁺) $3^+, 2^+$ 3^+	D		I _{γ} : other: 8.3 <i>15</i> (¹⁴ C,pn γ). E _{γ} : weighted average of 2296.8 <i>2</i>
								from $({}^{18}\text{O},\text{pn}\gamma)$ and 2298.4 10 from $({}^{14}\text{C},\text{pn}\gamma)$.
2412.63	1^{+}	611.1 ^{‡#} 6	8.3 [‡] 21	1800.1	(2,3 ⁺)			
		$1724.6^{+#} 2$	$100^{+} 35$	687.66	1 ⁺			
		$2109.1^{10} 2$ $2412.6^{10} 3$	$63^{+}21$	243.90	2* 3+			
2433.8		1315.3 3	100	1118.45	3 ⁺ ,2 ⁺			
2843.3 2902.98	(5)	1724.8 <i>3</i> 606.4 <i>2</i>	100 100 <i>4</i>	1118.45 2296.64	3 ⁺ ,2 ⁺ (3,4)			E _{γ} : weighted average of 606.4 <i>1</i> from (¹⁸ O,pn γ) and 607.7 9 from (¹⁴ C pn γ)
		1658.9 2	72 3	1243.95	(4+)			E_{γ} : weighted average of 1658.9 <i>l</i> from (¹⁸ O,pn γ) and 1661.5 <i>l</i> 4 from (¹⁴ C,pn γ). I_{γ} : other: 43 <i>l</i> 4 (¹⁴ C,pn γ).
3164.2	1^{+}	2476.4 [‡] 3	100	687.66	1^{+}			
3362.87	1^{+}	3118.8 [‡] 2	100	243.90	2+			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{30}\text{Al})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.@	Comments
3458.6		615.2 4	14.1 22	2843.3			
		2214.9 8	100 13	1243.95	(4^{+})		E_{γ} : other: 2217.4 15 (¹⁴ C,pn γ).
3898.29	(6)	995.3 1	100	2902.98	(5)	D	E_{γ} : other: 997.4 <i>13</i> (¹⁴ C,pnγ). Mult.: From (¹⁸ O,pnγ).
4570.7	$(5,6^+)$	1727.8 16	23 5	2843.3			
		3326.8 18	100 21	1243.95	(4^{+})		
5358.5	(6)	1460.1 10	95 <i>21</i>	3898.29	(6)		
		2456 <i>3</i>	100 47	2902.98	(5)		
5415.1		2571.7 <i>13</i>	100	2843.3			
5500.73	(7)	1602.4 <i>1</i>	100 4	3898.29	(6)	D	E _γ : other: 1605.1 25 (¹⁴ C,pnγ) placed differently from 3904.2 keV level.
		2595 5 16	13.0.14	2002.08	(5)		
6414.2	(7)	1843.5 6	100 11	4570.7	$(5,6^+)$		
	(.)	2515.7 6	94 9	3898.29	(6)		
7240.6	(8)	1739.8 <i>3</i>	100 7	5500.73	(7)		
		3345 4	28.4 25	3898.29	(6)		
9373.1	(9)	2958.6 <i>13</i>	100 16	6414.2	(7)		
		3875 7	22 12	5500.73	(7)		

[†] From ¹⁴C(¹⁸O,pn γ), except otherwise noted. [‡] From ³⁰Mg β^- decay.

[#] Weighted average of data from (¹⁸O,pn γ) and (¹⁴C,pn γ).

[@] From (¹⁸O,pn γ), assigned in 1983Ko38 based on measured $\gamma(\theta)$ and RUL, except otherwise noted.

& Additional information 1.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{30}_{13}\text{Al}_{17}$