¹⁴C(¹⁸O,pnγ) 2010St13,1983Ko38

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	M. S. Basunia, A. Chakraborty	NDS 197,1 (2024)	31-May-2024						

2010St13: 90% enriched ¹⁴C target bombarded with a 37 MeV ¹⁸O beam at ANL Tandem Linear Accelerator System; Fragment Mass Analyzer, parallel-plate gridded avalanche counter (PGAC), Gammasphere array, consists of 101 Compton-suppressed HPGe detectors, Measured: $E\gamma$, $I\gamma$, $\gamma(\theta)$, DCO, γ - γ coin, time-of-flight parameter, deduced level scheme. Comparison with shell-model calculations.

1983Ko38: ¹⁴C target bombarded with a 25 MeV ¹⁸O beam; two n-type HPGe detectors at 90° and 55°; Measured: E γ , p γ coin, I γ (branching), $\gamma\gamma$ coin, $\gamma(\theta)$, lifetimes. The results were compared with shell model calculations.

³⁰Al Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2} &	Comments	
0	3+		J^{π} : from Adopted Levels.	
243.92 8	2+ #	<8 ns	J^{π} : 443 γ M1 feeding this state from 1 ⁺ . Anisotropic distribution of 244 γ rules out 0 ⁺ and assigned (1,2) by 1983Ko38. 243.9 γ D to 3 ⁺ and 2 ⁺ presented by 2010St13. T _{1/2} : 3 ps <t<sub>1/2<8 ns (1983Ko38).</t<sub>	
687.54 12	1^{+}	0.7 ps 2	J^{π} : from 443 γ flat patterned angular distribution and mean-life (1983Ko38).	
991.0 9	(2,3,4) [#]	97 fs 55	E(level): level from 1983Ko38 and not reported in 2010St13. J^{π} : 991 γ D to 3 ⁺ state.	
1118.36 12	3+	83 fs 55	J^{π} : 874.8 γ M1 to 2 ⁺ state.	
1243.97 <i>10</i> 1799.6 <i>4</i> 2017.0 5	(4) [#]	118 fs 55		
2296.61 <i>13</i> 2433.7 <i>4</i> 2843.3 <i>3</i>	4		J^{π} : 2296.8 γ D to 3 ⁺ .	
2902.97 <i>12</i> 3458.6 <i>5</i>	5 [‡]		J^{π} : γ -transitions to J=4, (4) states.	
3898.28 16	6		J^{π} : 995.3 γ D to 5.	
4570.7 7	(5,6)		J^{π} : populated by 6414 keV level (J=7) and 3326.8 γ feeding J=(4) state.	
5358.5 <i>10</i> 5415.1 <i>14</i>	(6) [@]		J^{π} : γ -transitions to J=6 and J=5.	
5500.72 19	7‡		J^{π} : 1602.4 γ D to J=6 state and 2595.5 γ to J=5 state.	
6414.2 6	7		J^{π} : assigned in 2010St13 considering 2515.7 γ as D (as reported in (¹⁴ C,pn γ)–2008Hi05) feeding the J=6 state.	
7240.6 4	(8) [@]			
9373.1 14	(9) ^{‡@}			

 † From a least squares fit to the $\gamma\text{-ray energies}.$

[‡] Authors (2010St13) note that J=9 to 5 (spin 4 in text, possibly a misprint) sequence from 9373 to 2902.98 (2296 in the text probably a misprint – because for a J=4 it is not a Δ J=2 transition from 2902.98, J=5) keV level connected by Δ J=2 transitions and of common parity. It appears that Δ J=2 transition is valid up to 2902.97 keV level.

π is either '+' or '-'.

[@] Assigned by 2010St13 on the basis of yrast-feeding and structural systematics.

[&] From 1983Ko38 using the DSA method, given as upper limits.

1

$^{14}C(^{18}O,pn\gamma)$ 2010St13,1983Ko38 (continued)

γ (³⁰Al)

 R_{DCO} ratios ≈ 1.0 and ≈ 0.5 -0.6 for stretched-quadrupole and stretched-dipole transitions, respectively, for gates set on stretched-quadrupole and stretched-dipole transitions, respectively.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
243.90 [‡] 8	81 4	243.92	2+	0	3+	M1 [@]	A ₂ =-0.12 3; A ₄ =-0.03 (1983Ko38) A ₂ =-0.04 (2010St13) E _{γ} : other: 242.9 <i>I</i> (2010St13). Mult.: from R _{DCO} =1.0 2 (2010St13).
443.63 [‡] 8	17.2 7	687.54	1+	243.92	2+	M1 [@]	$A_2=+0.07 \ II; A_4=-0.08 \ II \ (1983Ko38)$ $A_2=-0.06 \ 6 \ (2010St13)$ $E_{ac}: other: 442.8 \ I \ (2010St13).$
606.4 <i>1</i> 615.2 <i>4</i>	60.2 <i>23</i> 1.3 <i>2</i>	2902.97 3458.6	5	2296.61 2843.3	4		$R_{DCO}=1.0\ 2\ (2010St13).$
874.4 1	40.4 15	1118.36	3+	243.92	2+	M1 [@]	A ₂ =+0.19 <i>15</i> ; A ₄ =+0.03 <i>16</i> (1983Ko38) Mult.: from $\gamma(\theta)$ and R _{DCO} =1.0 <i>1</i> (2010St13).
991.0 [‡] 9		991.0	(2,3,4)	0	3+	D	0.23 W.u. 13 for M1 and $(7.4 \ 42) \times 10^{-3}$ W.u. for E1 (1983Ko38).
995.3 1	78 <i>3</i>	3898.28	6	2902.97	5	D	A ₂ =-0.14 3 (2010St13) Mult.: assigned by 2010St13 based on $\gamma(\theta)$.
1051.7 14	1.3 <i>3</i>	2296.61	4	1243.97	(4)		
1112.5 4	0.29 16	1799.6		687.54	1^{+}		
1119.3 <i>13</i>	4.7 11	1118.36	3+	0	3+		
1177.9 4	9.0 5	2296.61	4	1118.36	3+		
1243.9 <i>1</i>	100 4	1243.97	(4)	0	3+	D	$\begin{array}{l} A_2 = -0.11 \ 9; \ A_4 = -0.06 \ 10 \ (1983 \text{Ko}38) \\ A_2 < 0 \ (2010 \text{St}13) \\ R_{\text{DCO}} = 1.2 \ 3 \ (2010 \text{St}13). \end{array}$
1315.3 <i>3</i>	1.1 <i>1</i>	2433.7		1118.36	3+		
1329.4 4	0.21 12	2017.0		687.54	1^{+}		
1460.1 <i>10</i>	1.8 4	5358.5	(6)	3898.28	6		
1554.6 6	2.7 4	1799.6		243.92	2+		
1602.4 <i>1</i>	34.5 14	5500.72	7	3898.28	6	D	Mult.: from R _{DCO} =1.2 3 (2010St13).
1658.9 <i>1</i>	43.2 18	2902.97	5	1243.97	(4)		$R_{DCO} = 1.5 \ 4 \ (2010St13).$
1724.8 <i>3</i>	12.0 9	2843.3		1118.36	3+		
1727.8 16	1.7 4	4570.7	(5,6)	2843.3			
1739.8 <i>3</i>	8.1 6	7240.6	(8)	5500.72	7		
1843.5 6	8.5 9	6414.2	7	4570.7	(5,6)		
2214.9 8	9.2 12	3458.6		1243.97	(4)		
2296.8 2	52 3	2296.61	4	0	3+	D	A ₂ =-0.27 6 (2010St13) R _{DCO} =1.1 3 (2010St13). Mult.: based on $\gamma(\theta)$ and DCO data in 2010St13.
2456 3	1.9 9	5358.5	(6)	2902.97	5		• • •
2515.7 6	8.0 8	6414.2	7	3898.28	6		
2571.7 13	2.2 4	5415.1		2843.3			
2595.5 16	4.5 5	5500.72	7	2902.97	5		
2958.6 13	7.3 12	9373.1	(9)	6414.2	7		
3326.8 18	7.3 15	4570.7	(5.6)	1243.97	(4)		
3345 4	2.3 2	7240.6	(8)	3898.28	6		
3875 7	1.6 9	9373.1	(9)	5500.72	7		

[†] From 2010St13, except otherwise noted.

[‡] From 1983Ko38. [#] From 2010St13. Branching from 1983Ko38.

[@] From comparison of experimental transition strength (W.u.) (M1) with calculation, except otherwise noted. E2 transition strengths were not given (1983Ko38).

 $^{30}_{13}\text{Al}_{17}$