${ }^{3} \mathrm{He}(\mathrm{e}, \mathrm{e})$

$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Huthor }}{\text { J. E. Purcell }}$, C. G. Sheu $^{*}{ }^{*} \quad \frac{\text { Citation }}{\text { NDS } 1301(2015)} \quad$| Literature Cutoff Date |
| :---: |
| 30-Jun-2015 |

The following table lists references for electron scattering from ${ }^{3} \mathrm{He}$:

In (1994Am07), the three experiments reported in (1982Ca15,1985Ju01,1992Am04) for electron scattering from ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ are described and a complete set of cross sections, electric and magnetic form factors are obtained. Also, $\mathrm{T}=0,1$ form factors are obtained and compared with $\mathrm{A}=2,4$ form factors. Also see (2005Go26) for electric and magnetic form factors for ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ as well as $\mathrm{T}=0,1$ form factors and comparison with theory.

Reference	$Q^{2}\left(\mathrm{fm}^{-2}\right)$	Comments
1965Co08	1-8	$\mathrm{r}_{\mathrm{c}}=1.87 \mathrm{fm} \mathrm{5}, \mathrm{r}_{\mathrm{m}}=1.79 \mathrm{fm} 10$
1970Mc20,	≤ 20	Measured charge and magnetic form factors;
1977Mc03		$\mathrm{r}_{\mathrm{c}}=1.88 \mathrm{fm} \mathrm{5}, \mathrm{r}_{\mathrm{m}}=1.95 \mathrm{fm} 11$
1972Be65	8.8-15.6	Measured charge and magnetic form factors
1977Sz02	0.032-0.34	$\mathrm{r}_{\mathrm{c}}=1.89 \mathrm{fm} 5$
1978Ar05	18-77	Measured structure function
1982Ca15	7.3-31.7	Measured magnetic form factor
1983Du01	0.7-11	$\mathrm{r}_{\mathrm{c}}=1.935 \mathrm{fm} 30, \mathrm{r}_{\mathrm{m}}=1.935 \mathrm{fm} 40$
19850t02	0.2-3.7	$\mathrm{r}_{\mathrm{c}}=1.976 \mathrm{fm} 15, \mathrm{r}_{\mathrm{m}}=1.99 \mathrm{fm} 6$
1987Be30	0.09-8.26	Measured isoscalar, isovector form factors
1992Am04	1.0-25.6	Measured charge and magnetic form factors
		${ }^{3} \mathrm{He}$ Levels
$\underline{\text { E(level) }} \quad \mathrm{J}^{\pi}$		
$0.0 \quad 1 / 2^{+}$		

