Adopted Levels

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. E. Purcell [#] , C. G. Sheu [*]	NDS 130 1 (2015)	30-Jun-2015				

$Q(\beta^{-})=18.5906 \ 32; \ S(n)=6257.233 \ 2 \ 2012Wa38$

- The discovery of hydrogen isotope ³H with an estimate of its mass was reported in 1934; see (2012Th01) for a historical review. In (1947B131,1947B132) it is shown that the spin of ³H is 1/2 and the ratio of the magnetic moment of ³H to that of the proton is found to be 1.067 *1*. For the ³H spin, see also (1949Di31).
- Calculations show that the ground state wave functions of ³H and ³He consist of a spatially symmetric S state (\approx 90%), a D state (\approx 9%), a mixed symmetry S' state (\approx 1%) and a small P state (<0.1%). See (1979Sa15,1986Is01,1987Er07,1993Wu08,2002Ho09).

The ratio η_t of the asymptotic D state to S state of ³H is -0.0418 31. This value is the inverse square of the uncertainty weighted average of the two most recent measurements (1993Ge04,1994Ko29). The following table lists references reporting values for η_t :

Also see (1988Fr01) where it was noted that there is a strong correlation between the triton and deuteron asymptotic ratios. Using several models, they obtained $\eta_t/\eta_d=1.68~4$. Using this ratio value and $\eta_d=0.0256~4$ from (1990Ro02) gives $\eta_t=-0.0430~12$.

The charge and magnetic rms radii for ³H are $r_c=1.755$ fm 86 and $r_m=1.840$ fm *181* (1994Am07). See (2005Go26) for electric and magnetic form factors for ³H and ³He as well as isoscalar and isovector versions and comparison with theory. Also see the reaction ³H(e,e)³H below for more details.

Triton magnetic moment, μ_t =+2.978962467 26 μ_N . This value is obtained from a measurement of the ratio of the triton to proton magnetic moments μ_t/μ_p =1.0666399151 30 (2011Ne15) and the value of the proton magnetic moment μ_p =+2.792847356 23 μ_N reported in (2014Ol01). Also see Table XLI of (2012Mo42) which gives μ_t =2.978962448 38.

Referenc	ce $\eta_{\rm t}$	Comments
1981Bo04	-0.048 7	2 H(pol d,p) 3 H, E _d =13 MeV
1982Bo06	-0.051 5	2 H(pol d,p) 3 H, E _d =7-13 MeV
1989Vu01	-0.050 6	4 He(pol d, 3 He) 3 H, E _d =32-50 MeV
1992Da 0 1	-0.043 2	DWBA analysis of sub-Coulomb (pol d,t)
		reactions; also see (1992Ge05), who argue that
		the uncertainty should be 0.004, not 0.002
1993Ge04	-0.0431 25	DWBA analysis of sub-Coulomb (pol d,t) reactions
1994Ko29	-0.0411 18	DWBA analysis of sub-Coulomb (pol d,t) reactions

³H Levels

Cross Reference (XREF) Flags

A ${}^{1}H({}^{6}He,\alpha)$ D ${}^{3}H(\gamma,n),(\gamma,nn)$ B ${}^{2}H(n,\gamma)$ E=thermal E ${}^{3}H(e,e)$ C ${}^{2}H(n,n)$

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	1/2+	12.32 y 2	AB	$%β^-=100$ μ=+2.978962467 26 μ: from μ _t /μ _p =1.0666399151 30 (2011Ne15) and μ _p =+2.792847356 23 μ _N (2014Ol01). ³ H mass excess: 14949.8061 keV 22 (2012Wa38). ³ H binding energy: 8481.7986 keV 24; S(n)=6257.2327 keV 22 using mass excess values from (2012Wa38). T _{1/2} : 12.32 y 2=4500 d 8=3.888×10 ⁸ s 7. T _{1/2} : The half-life value given here comes from (2000Ch01,2000Lu17). (2000Ch01) analyzed 16 measurements between 1940 and 1991 of ³ H half-life, rejected 3 and averaged the rest that ranged from 12.1 y to 12.58 y. They obtained a half-life of 12.32 y 2. The authors of (2000Lu17) recommend using the day as the time unit since it is

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

³H Levels (continued)

E(level) J^{π} $T_{1/2}$ XREF

Comments

exactly defined in terms of the second. The same data were reanalyzed using a different method as reported in (2006Ma57) resulting in $T_{1/2}$ =4497 d 4 or 12.31 y 1.