29 S β^+ decay 1979Vi01,1985Zh05

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. Shamsuzzoha Basunia	NDS 113, 909 (2012)	1-Jan-2012			

²⁹P Levels

Parent: ²⁹S: E=0.0; J^π=(5/2⁺); T_{1/2}=188 ms 4; Q(β⁺)=13795 50; %β⁺ decay=100.0
1979Vi01: ²⁹S was produced from ²⁸Si(³He,2n), E=31.3 MeV on target; recoiled ²⁹S was thermalized in the helium gas and transported to a counting chamber and was deposited on aluminum foil; several ΔE-E counter telescopes were used to measure all different proton decays; measured beta-delayed proton spectra; deduced ²⁹P excited states and I(ε+β+).
1985Zh05: ²⁹S was produced from ²⁸Si(³He,2n), E=31.5 MeV (Same research group as of 1979Vi01); deduced I(ε+β+).

E(level) [†]	J ^{##}	T _{1/2} #	E(level) [†]	J ^{π#}
0	$1/2^{+}$	4.142 s 15	7361 10	
1383.55 7	3/2+		7523 5	$(3/2^+)$
1953.91 17	5/2+		7755 5	$(5/2^+)$
2422.7 3	3/2+		8106 11	$(5/2^+)$
3105.9 3	5/2+		8234 9	$(3/2^+)$
4080.5 3	7/2+		8379 <i>3</i>	$(5/2^+)$
4954.1 5	$(5/2^+)$		8432 15	$(5/2^+)$
5293.0 5	$(7/2^+)$		8532 10	$(3/2^+, 5/2^+)$
5826 4			8810 <i>30</i>	
5968 <i>3</i>	3/2+		8865 12	$(1/2^+, 3/2^+)$
6328 5	(1/2, 3/2)		9389 12	$(3/2^{+})$
6505 15			9715 [‡] 50	$(3/2^+, 5/2^+)$
6828 5	$(3/2^+, 5/2^+)$		9855 [‡] <i>30</i>	$(3/2^+, 5/2^+)$
7148 10			10095 [‡] <i>30</i>	
7272 5	$(5/2^+)$		10535 [‡] <i>30</i>	$(3/2^+)$

[†] From Adopted Levels, except otherwise noted.

[‡] From 1985Zh05.

From Adopted Levels.

E(decay)	E(level)	$\mathrm{I}\beta^{+}$	Ie [@]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger @}$	Comments
$(3.26 \times 10^3 \ 6)$	10535	0.18 1	0.00090 9	3.98 6	0.18 [#] 1	av E β =980 28; ε K=0.0045 4; ε L=0.00042 4; ε M+=4.7×10 ⁻⁵ 4
$(3.70 \times 10^3 6)$	10095	0.12 1	0.00035 4	4.50 6	0.12 [#] 1	av E β =1188 28; ε K=0.00266 18; ε L=0.000245 17; ε M+=2.74×10 ⁻⁵ 19
$(3.94 \times 10^3 6)$	9855	0.21 2	0.00048 5	4.42 6	0.21 [#] 2	av E β =1302 28; ε K=0.00206 13; ε L=0.000190 12; ε M+=2.12×10 ⁻⁵ 14
(4.08×10 ³ 7)	9715	0.100 20	0.00021 4	4.80 10	0.10 [#] 2	av E β =1347 24; ε K=0.00187 10; ε L=0.000173 9; ε M+=1.93×10 ⁻⁵ 10
$(4.41 \times 10^3 5)$	9389	0.43 5	0.00063 8	4.40 6	0.43 5	av E β =1525 25; ε K=0.00132 7; ε L=0.000122 6; ε M+=1.36×10 ⁻⁵ 7
$(4.93 \times 10^3 5)$	8865	0.26 3		4.90 6	0.26 3	av Eβ=1779 25
$(4.99 \times 10^3 6)$	8810	0.14 3		5.20 10	0.14 3	av $E\beta = 1805\ 29$
$(5.26 \times 10^3 5)$	8532	1.14 10		4.42 5	1.14 10	av $E\beta = 1940\ 25$
$(5.36 \times 10^3 5)$	8432	< 0.7		>4.7	< 0.7	av E β =1989 26
$(5.42 \times 10^3 5)$	8379	18.3 6	0.0123 6	3.28 3	18.3 6	av E β =2015 25; ϵ K=0.000608 21; ϵ L=5.62×10 ⁻⁵ 20: ϵ M+=6.28×10 ⁻⁶ 22

 ε, β^+ radiations

Continued on next page (footnotes at end of table)

29 S β^+ decay	1979Vi01,1985Zh05	(continued)
---------------------------	-------------------	-------------

E(decay)	E(level)	Ιβ ⁺ @	Ie@	Log ft	$I(\varepsilon + \beta^+)^{\dagger @}$	Comments
$(5.56 \times 10^3 5)$	8234	1.01 14		4.61 7	1.01 14	av Eβ=2085 25
$(5.69 \times 10^3 5)$	8106	1.49 9		4.49 <i>4</i>	1.49 9	av E β =2148 25
$(6.04 \times 10^3 5)$	7755	0.23 4		5.45 8	0.23 4	av Eβ=2319 25
$(6.27 \times 10^3 5)$	7523	0.082 15		5.99 9	0.082 15	av Eβ=2433 25
$(6.43 \times 10^3 5)$	7361	0.25 4		5.57 8	0.25 4	av Eβ=2513 26
$(6.52 \times 10^3 5)$	7272	0.33 4		5.48 6	0.33 4	av Eβ=2557 25
$(6.65 \times 10^3 5)$	7148	1.08 7		5.01 4	1.08 7	av Eβ=2617 25
$(6.97 \times 10^3 5)$	6828	< 0.3		>5.7	< 0.3	av Eβ=2775 25
$(7.29 \times 10^3 5)$	6505	0.30 4		5.79 7	0.30 4	av Eβ=2934 26
$(7.47 \times 10^3 5)$	6328	0.38 5		5.74 6	0.38 5	av Eβ=3020 25
$(7.83 \times 10^3 5)$	5968	0.18 2		6.17 6	0.18 2	av Eβ=3198 25
$(7.97 \times 10^3 5)$	5826	4.0 4		4.87 5	4.0 4	av Eβ=3268 25
$(8.50 \times 10^3 5)$	5293.0	3.9 <i>3</i>		5.03 4	3.9 <i>3</i>	av Eβ=3531 25
$(8.84 \times 10^3 5)$	4954.1	11.9 4	0.00145 6	4.639 22	11.9 4	av E β =3699 25; ε K=0.0001102 2; ε L=1.017×10 ⁻⁵ 20; ε M+=1.136×10 ⁻⁶ 22
$(9.71 \times 10^3 5)$	4080.5	< 0.5		>6.2	< 0.5	av Eβ=4132 25
$(1.069 \times 10^4 5)$	3105.9	0.9 3		6.20 15	0.9 [‡] 3	av Eβ=4615 25
$(1.137 \times 10^4 5)$	2422.7	20.7 19	0.00109 10	4.98 5	20.7 [‡] <i>19</i>	av E β =4955 25; ε K=4.79×10 ⁻⁵ 7; ε L=4.43×10 ⁻⁶ 7; ε M+=4.94×10 ⁻⁷ 8
$(1.184 \times 10^4 5)$	1953.91	4.5 4		5.73 4	4.5 [‡] 4	av Eβ=5188 25
$(1.241 \times 10^4 5)$	1383.55	27 2	0.0011 1	5.06 4	27 [‡] 2	av E β =5472 25; ε K=3.61×10 ⁻⁵ 5; ε L=3.33×10 ⁻⁶ 5; ε M+=3.72×10 ⁻⁷ 5

ϵ, β^+ radiations (continued)

[†] From 1979Vi01, except otherwise noted.
[‡] Calculated in 1979Vi01 from the ²⁹Al(β⁻)²⁹Si mirror decay.
[#] From 1985Zh05.
[@] Absolute intensity per 100 decays.

E_{γ}^{\dagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
468.79 <i>3</i>	1.08 55	2422.7	$3/2^{+}$	1953.91	$5/2^{+}$
570.36 17	1.56 31	1953.91	$5/2^{+}$	1383.55	$3/2^{+}$
1039.15 <i>3</i>	3.22 60	2422.7	$3/2^{+}$	1383.55	$3/2^{+}$
1151.99 <i>3</i>	0.53 11	3105.9	5/2+	1953.91	$5/2^{+}$
1383.55 7	45.0 25	1383.55	$3/2^{+}$	0	$1/2^{+}$
1657.80 <i>3</i>	< 0.02	4080.5	$7/2^{+}$	2422.7	$3/2^{+}$
1722.35 3	1.67 33	3105.9	$5/2^{+}$	1383.55	$3/2^{+}$
1848.20 5	0.46 17	4954.1	$(5/2^+)$	3105.9	$5/2^{+}$
1953.91 <i>17</i>	17.9 28	1953.91	$5/2^{+}$	0	$1/2^{+}$
2126.59 <i>3</i>	< 0.26	4080.5	$7/2^{+}$	1953.91	$5/2^{+}$
2187.10	0.86 21	5293.0	$(7/2^+)$	3105.9	$5/2^{+}$
2422.7 3	22.6 20	2422.7	$3/2^{+}$	0	$1/2^{+}$
2531.40 5	1.70 50	4954.1	$(5/2^+)$	2422.7	$3/2^{+}$
2696.95 <i>3</i>	< 0.22	4080.5	$7/2^{+}$	1383.55	$3/2^{+}$
3000.19 5	2.48 54	4954.1	$(5/2^+)$	1953.91	$5/2^{+}$
3105.9 <i>3</i>	< 0.07	3105.9	$5/2^{+}$	0	$1/2^{+}$
3339.09	3.04 31	5293.0	$(7/2^+)$	1953.91	$5/2^{+}$
3424.90 <i>3</i>	3.6 17	8379	$(5/2^+)$	4954.1	$(5/2^+)$
3570.55 5	9.1 11	4954.1	$(5/2^+)$	1383.55	$3/2^{+}$

$\gamma(^{29}P)$

Continued on next page (footnotes at end of table)

29 S β^+ decay 1979Vi01,1985Zh05 (continued)

$\gamma(^{29}P)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
3909.45	< 0.23	5293.0	$(7/2^+)$	1383.55	3/2+
4954.1 5	1.70 50	4954.1	$(5/2^+)$	0	$1/2^{+}$
5956.30 <i>3</i>	4.5 6	8379	$(5/2^+)$	2422.7	$3/2^{+}$
6425.09 <i>3</i>	7.9 28	8379	$(5/2^+)$	1953.91	$5/2^{+}$
6995.45 <i>3</i>	2.2 4	8379	$(5/2^+)$	1383.55	$3/2^{+}$

[†] From Adopted Gammas.
[‡] From Adopted branching ratios and level feedings.
[#] Absolute intensity per 100 decays.

 ${}^{29}_{15}P_{14}-4$

29 S β^+ decay 1979Vi01,1985Zh05

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

