History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	31-Jan-2016		

Parent: ³⁰Ar: E=0.7×10³; J^{π} =(2⁺); $T_{1/2}$ =?; Q(p)=0.4×10³; %p decay=100.0

 30 Ar-T_{1/2}: Expected to be very short as for the 30 Ar g.s. which is <10 ps.

 30 Ar-Q(p): Estimated by compiler from level-scheme shown in Fig. 5 of 2015Mu13 (S(p)(30 Ar g.s.)=1.8 MeV – 2.25 MeV=0.4 MeV). Other: S(p)=-430 640 from systematic trend (2012Wa38).

 30 Ar-%p decay: %p=100 assumed for the decay of excited (2⁺) state of 30 Ar.

2015Mu13: identification of ²⁹Cl nuclide through the investigation of ³⁰Ar decay by in-flight decay spectroscopy of particle spectra and analysis of reaction kinematics. ³⁰Ar produced in one-neutron knockout from ³¹Ar. The secondary ³¹Ar beam at 620 MeV/nucleon was produced in ⁹Be(³⁶Ar,X),E=885 MeV/nucleon primary fragmentation reaction at SIS-GSI accelerator facility. ³¹Ar ions separated by using the fragment separator FRS. Secondary ⁹Be target was 4.8 g/cm² thick. The ³⁰Ar ions were produced in one-neutron knockout reaction. Measured positions and angular correlations of ³⁰Ar in-flight decay products such as coincident two protons (emitted by the decay of ³⁰Ar) and heavy-ion recoil such as ²⁸S (2p-decay daughter of ³⁰Ar).

Observed peaks "D to H" in range of 3.5 to 15 MeV in the ²⁸S+p+p spectrum of Fig. 2c, and peaks #3, #4 and #5 in the range of 2.5-5 MeV in the ²⁸S+p spectrum of Fig. 3 in 2015Mu13 correspond to higher excitations in ³⁰Ar and ²⁹Cl, which the authors relegate to forthcoming publications.

²⁹Cl Levels

E(level)	$J^{\pi \dagger}$	Comments	
0	$(1/2^+)$	%p≈100	
		Decays to ground state of 2° S. E(level): the ground state is deduced at E(n)-1.8 MeV <i>l</i> from analysis of neak #1 in Figure 3 of 2015Mu13	
		implying $S(p)(^{29}Cl) = -1.8 \text{ MeV } I$ i.e. ground state is unbound towards 1p emission. Note that in 2012Wa38, $S(p) = -2410 \ 430$ from systematics.	
0.5×10^{3}	$(3/2^+)$	%p≈100	
		Decays to ground state and first 2^+ state of 28 S.	
		E(level): the excited state is deduced from the analysis of peak #1 with E(p)=1.8 MeV and peak #2 with	
		E(p)=2.3 MeV in Figure 3 of 2015Mu13. This energy difference is similar to energy difference calculated by	
		applying a Thomas-Ehrman shift to energy levels in isobaric mirror nuclide, ²⁹ Mg.	

[†] From analogy with mirror nuclide ²⁹Mg, where the 3/2⁺ ground state and the first excited state, presumably 1/2⁺, are separated by only 55 keV (see ²⁹Mg Adopted Levels) (2015Mu13).