Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	NDS 156, 148 (2019)	31-Jan-2019		

 $Q(\beta^{-}) = -1810 SY; S(n) = 5960 SY; S(p) = 2530 SY; Q(\alpha) = 10146 7$ 2017Wa10

Estimated uncertainties (2017Wa10): $\Delta Q(\beta^{-})=790$, $\Delta S(n)=680$, $\Delta S(p)=800$.

The ²⁸⁰Rg nuclide is produced in about 100 (or 113) correlated decay chains observed at Dubna, GSI and Berkeley, starting from ²⁸⁸Mc and ending in ²⁶⁸Db, which decays by SF. Main references for production of ²⁸⁸Mc: 2004Og03, 2005Og02, 2005Dm03, 2012Og02, 2013Ru11, 2015Ru11 2013Og01, 2015Ga24, 2016Fo10. See ²⁸⁸Mc Adopted Levels for details.

2012Og02 and 2013Og01 proposed an isomer in ²⁷⁶Mt with a half-life of 4 s, which could decay by α to ²⁷²Bh, but it has not been confirmed in the work of 2013Ru11 (Also 2016Fo10). 2013Ru11 suggest that the isomer could be equally associated with ²⁸⁰Rg or ²⁷²Bh.

For theoretical studies, consult Nuclear Science References (NSR) database at NNDC, BNL for 56 primary references dealing with the half-lives and other aspects of nuclear structure in this mass region.

²⁸⁰Rg Levels

Cross Reference (XREF) Flags

A 284 Nh α decay (0.97 s)

E(level)	T _{1/2}	XREF	Comments	
0	4.4 s +5-4	A	 %α≈100 Only the α decay mode has been observed. E(level): The observed activity is assumed to correspond to the ground state of ²⁸⁰Rg, as seems suggested in level-scheme Fig. 3 of 2013Ru11. J[#]: 1⁻,14⁻ from Ω(proton)=13/2⁺, Ω(neutron)=15/2⁻ (1997Mo25, theory). T_{1/2}: from 2016Fo10, based on detailed statistical analysis of 96 observed correlated events, starting from ²⁸⁸Mc, in three laboratories (FLNR-JINR-DUBNA, GSI and Berkeley). Others: 4.2 s +6-4 (2017Og01 review); 4.3 s +5-4 (2016Fo10, from analysis of 109 decay chains by including the short chains as described by the authors; also 4.27 s +49-50 from analysis of 97 chains and 4.67 s +54-44 from analysis of 98 chains); 4.6 s +8-7 (2015Og05, review). Measurements: 3.6 s +43-13 (2004Og03,2005Og02,2011Og07 from three correlated events); 4.8 s +8-6 (2013Ru11,2015Ru11, from all the known decay chains at the time); 3.61 s +90-60 (2013Og01, update of 3.53 s +99-63 in 2012Og02); 6.8 s +32-16, 3.0 s +15-7 (2016Fo10, from correlated decay times using different combinations of data for 14 short decay chains in their work and from previous Dubna and Berkeley groups). Ea=9.09 to 10.07 MeV (2017Og01 review, 9.09-9.92 MeV in 2015Og05 review); 9.76 MeV 1 (2016Fo10); 9.77 MeV 1 for one of the events, ranges from (2013Ru11,2015Ru11); 9.75 MeV 6 (2004Og03,2011Og07), from ²⁸⁰Rg decay to an excited state in ²⁷⁶Mt, according to 2013Ru11. 	

S(2n)=12770 640, S(2p)=6430 820 (syst,2017Wa10).