²⁸**P** ε decay **1996Og01,1982Wa05**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	M. Shamsuzzoha Basunia	NDS 114, 1189 (2013)	1-Apr-2013		

Parent: ²⁸P: E=0; J^{π}=3⁺; T_{1/2}=270.3 ms 5; Q(ϵ)=14345.1 *12*; % ϵ +% β ⁺ decay=100.0

Others: 1979Ho27, 1972De28, 1972Wi23, 1968Ar03.

Sum of decay energies of this dataset is 14344 keV 71 cf. 14345.1 keV 12 obtained from ²⁸P ε decay Q(g.s.) and branching.

1996Og01: ²⁸P was produced bombarding natural Si target with proton beams, ²⁸Si(p,n), E=28 and 45 MeV; helium jet transport, particle telescope; measured delayed proton and α spectrum; deduced β^+ feeding to ²⁸Si levels.

1982Wa05: ²⁸P was produced from ²⁸Si(p,n) reaction, E=18 MeV; γ rays were measured using Ge(Li) and NaI(Tl)

escape-suppressed spectrometer; Measured E γ , I γ and deduced β^+ feeding to ²⁸Si levels.

²⁸Si Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{#‡}
0.0	0+	7415.9 5	2+	9795.8 10	(2^{+})	12443 1	(2^{+})
1779.030 11	2^{+}	7799.21 15	3+	10208.8 15	(3 ⁺)	12550 <i>I</i>	(4^{+})
4617.53 14	4+	7933.52 21	2+	10667.99 23	$(2 \text{ to } 4)^+$	12573 <i>1</i>	(2^{+})
4980.0 <i>3</i>	0^{+}	8259.0 4	$2^{(+)}$	11515 <i>1</i>	(2^{+})	12714 <i>I</i>	$(0^+, 1^+)$
6276.40 15	3+	8588.80 17	3+	11657 <i>1</i>	(2^{+})	12725 <i>1</i>	(2^{+})
(6878.79 8)	3-	9315.78 19	3+	11931 <i>1</i>	5	12899 <i>1</i>	(4^{+})
(6887.65 10)	4+	9381.2 4	2+	12071 <i>1</i>	(2^{+})	13093 4	(4^{+})
(7380.59 9)	2^{+}	9479.1 9	(2^{+})	12289 <i>1</i>	(2^{+})		

[†] From a least-squares fit to γ -ray energies, except otherwise noted. Expected γ -ray energies are calculated, recoil energy subtracted, after the least-squares fit. Level energies 11515 keV and above are from 1996Og01.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1252 4)	13093	2.9×10 ⁻⁶ 15	2.0×10 ⁻⁵ 10	4.87 23	0.23×10 ⁻⁴ 12	av Eβ=92.3 17; εK=0.796 7; εL=0.0722 6; εM+=0.00699 6
(1446.1 16)	12899	9.×10 ⁻⁵ 3	7.2×10^{-5} 22	4.44 14	1.6×10 ⁻⁴ 5	av Eβ=169.78 64; εK=0.407 3; εL=0.0369 3; εM+=0.00357 3
(1620.1 16)	12725	0.00015 5	3.8×10 ⁻⁵ 12	4.81 14	1.9×10 ⁻⁴ 6	av Eβ=241.48 66; εK=0.1842 13; εL=0.01671 12; εM+=0.001618 12
(1631.1 16)	12714	$2.2 \times 10^{-5} 6$	5.2×10 ⁻⁶ 14	5.68 12	2.7×10 ⁻⁵ 7	av Eβ=246.08 66; εK=0.1754 12; εL=0.01592 11; εM+=0.001541 11
(1772.1 16)	12573	0.00034 8	4.1×10 ⁻⁵ 10	4.86 11	3.8×10 ⁻⁴ 9	av Eβ=305.62 67; εK=0.0980 6; εL=0.00889 6; εM+=0.000861 6
(1795.1 16)	12550	$6.4 \times 10^{-5} 6$	7.0×10 ⁻⁶ 7	5.64 5	7.1×10 ⁻⁵ 7	av $E\beta$ =315.44 67; ε K=0.0898 6; ε L=0.00814 5; ε M+=0.000789 5
(1902.1 16)	12443	0.0011 <i>3</i>	8.1×10 ⁻⁵ 20	4.63 11	$1.2 \times 10^{-3} 3$	av Eβ=361.45 68; εK=0.0612 4; εL=0.00555 3; εM+=0.000538 3
(2056.1 16)	12289	0.00068 17	2.9×10 ⁻⁵ 7	5.13 11	7.1×10 ⁻⁴ 18	av $E\beta$ =428.61 69; ε K=0.03766 18; ε L=0.003416 16; ε M+=0.0003308 1
(2274.1 16)	12071	8.7×10 ⁻⁵ 21	2.1×10 ⁻⁶ 5	6.37 11	8.9×10 ⁻⁵ 22	av $E\beta$ =525.30 70; ε K=0.02107 8; ε L=0.001910 8; ε M+=0.0001850 7
(2414.1 16)	11931	< 0.0009	<2.×10 ⁻⁵	>5.6	<9×10 ⁻⁴	av $E\beta$ =588.24 71; ε K=0.01526 6; ε L=0.001384 5; ε M+=0.0001340 5
(2688.1 16)	11657	0.00024 6	2.3×10 ⁻⁶ 6	6.47 11	2.4×10 ⁻⁴ 6	av Eβ=712.87 72; εK=0.00884 3; εL=0.0008019 2; εM+=7.764×10 ⁻⁵ 22

Continued on next page (footnotes at end of table)

1996Og01,1982Wa05 (continued)

 28 P ε decay

ϵ, β^+ radiations (continued)							
E(decay)	E(level)	$I\beta^+$ †	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments	
(2830.1 16)	11515	7.6×10 ⁻⁵ 20	5.8×10 ⁻⁷ 15	7.11 12	7.7×10 ⁻⁵ 20	av E β =778.27 73; ε K=0.006906 18; ε L=0.0006261 1: ε M+=6.062×10 ⁻⁵ 16	
(3677.1 12)	10667.99	0.30 1	0.00072 2	4.250 15	0.30 1	av E β =1175.80 58; ε K=0.002177 3; ε L=0.0001973 3; ε M+=1.910×10 ⁻⁵ 3	
(4136.3 19)	10208.8	0.029 4	4.3×10 ⁻⁵ 6	5.57 6	0.029 4	av Eβ=1394.99 93; εK=0.0013521 2; εL=0.00012254: εM+=1.1863×10 ⁻⁵ 2	
(4549.3 16)	9795.8	0.053 7	5.4×10 ⁻⁵ 7	5.56 6	0.053 7	av E β =1593.69 76; ε K=0.0009332 1; ε L=8.457×10 ⁻⁵ 12; ε M+=8.187×10 ⁻⁶ 11	
(4866.0 15)	9479.1	0.065 7		5.64 5	0.065 7	av E β =1746.84 73	
(4963.9 13)	9381.2	0.59 3		4.728 23	0.59 <i>3</i>	av $E\beta = 1794.30~62$	
(5029.3 12)	9315.78	11.3 4	0.0079 <i>3</i>	3.478 16	11.3 4	av $E\beta = 1826.05 59$; $\varepsilon K = 0.0006387 6$;	
						$\varepsilon L=5.788\times10^{-5}$ 6; εM +=5.603×10 ⁻⁶ 5	
(5756.3 12)	8588.80	3.64 11	0.00156 5	4.303 14	3.64 11	av E β =2180.14 60; ε K=0.0003894 3;	
. ,						$\varepsilon L = 3.528 \times 10^{-5} 3$; $\varepsilon M + = 3.416 \times 10^{-6} 3$	
(6086.1 13)	8259.0	0.537 11		5.269 9	0.537 11	av E β =2341.45 62	
(6411.6 12)	7933.52	2.84 20		4.67 3	2.84 20	av $E\beta = 2500.98 \ 60$	
(6545.9 12)	7799.21	2.44 9		4.787 16	2.44 9	av $E\beta = 2566.90 \ 60$	
(6929.2 13)	7415.9	0.19 6		6.03 14	0.19 6	av $E\beta = 2755.88 \ 64$	
(8068.7 12)	6276.40	7.6 4	0.0010 1	4.788 23	7.6 4	av $E\beta$ =3317.06 60; ε K=0.000120;	
						ε L=1.0850×10 ⁻⁵ 6; ε M+=1.0504×10 ⁻⁶ 6	
(9727.6 12)	4617.53	1.29 18		5.99 6	1.29 18	av E β =4138.17 60	
(12566.1 12)	1779.030	69.1 7	0.00210 3	4.851 5	69.1 7	av E β =5548.46 60; ε K=2.7685×10 ⁻⁵ 9; ε L=2.5076×10 ⁻⁶ 8; ε M+=2.4276×10 ⁻⁷ 8	

[†] Absolute intensity per 100 decays.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
(611.24)	< 0.0004	(6887.65)	4+	6276.40	3+
(911.53)	0.004 CA	7799.21	3+	6887.65?	4+
1352.15 15	0.140 2	10667.99	$(2 \text{ to } 4)^+$	9315.78	3+
1516.5 4	0.204 14	9315.78	3+	7799.21	3+
1522.78 10	0.86 <i>3</i>	7799.21	3+	6276.40	3+
1657.1	0.40 17	7933.52	2+	6276.40	3+
1658.81 [#]	0.80 17	6276.40	3+	4617.53	4+
1778.969 11	97.5 <i>5</i>	1779.030	2+	0.0	0^{+}
(2063.04)	0.0003 CA	9479.1	(2^{+})	7415.9	2^{+}
(2098.34)	0.0004 CA	9479.1	(2^{+})	7380.59?	2^{+}
(2261.07)	< 0.0003	(6878.79)	3-	4617.53	4+
(2269.92)	< 0.0005	(6887.65)	4+	4617.53	4^{+}
2312.3 1	0.196 6	8588.80	3+	6276.40	3+
(2400.37)	< 0.0001	(7380.59)	2+	4980.0	0^{+}
(2734.19)	0.003 CA	10667.99	$(2 \text{ to } 4)^+$	7933.52	2^{+}
2838.29 15	2.35 5	4617.53	4+	1779.030	2^{+}
2953.35 25	0.081 3	7933.52	2+	4980.0	0^{+}
3039.16 17	2.70 7	9315.78	3+	6276.40	3+
3104.4 4	0.024 4	9381.2	2+	6276.40	3+
3181.3 4	0.032 3	7799.21	3+	4617.53	4^{+}
3200.7 5	0.186 9	4980.0	0^{+}	1779.030	2^{+}
3252.6 7	0.032 3	10667.99	(2 to 4) ⁺	7415.9	2^{+}

 $\gamma(^{28}\text{Si})$

Continued on next page (footnotes at end of table)

$^{28}{\rm P}\,\varepsilon$ decay 1996Og01,1982Wa05 (continued)

$\gamma(^{28}Si)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
3278.8 5	0.098 4	8259.0	$2^{(+)}$	4980.0	0^{+}
(3286.99)	0.006 CA	10667.99	$(2 \text{ to } 4)^+$	7380.59?	2^{+}
3315.6 4	0.101 6	7933.52	2+	4617.53	4+
(3641.0)	0.002 CA	8259.0	$2^{(+)}$	4617.53	4+
(3779.80)	0.02 CA	10667.99	$(2 \text{ to } 4)^+$	6887.65?	4+
3970.9	0.116 24	8588.80	3+	4617.53	4+
(4390.86)	0.015 CA	10667.99	$(2 \text{ to } 4)^+$	6276.40	3+
4496.92 25	11.0 3	6276.40	3+	1779.030	2^{+}
(4498.33)	0.003 CA	9479.1	(2^{+})	4980.0	0^{+}
(4860.67)	0.004 CA	9479.1	(2^+)	4617.53	4+
(5098.77)	< 0.005	(6878.79)	3-	1779.030	2^{+}
(5107.63)	< 0.042	(6887.65)	4+	1779.030	2^{+}
(5600.37)	< 0.027	(7380.59)	2+	1779.030	2^{+}
(5635.66)	0.01 CA	7415.9	2+	1779.030	2^{+}
6019.47 25	1.75 8	7799.21	3+	1779.030	2^{+}
6154.2 4	0.112 10	7933.52	2+	1779.030	2^{+}
6479.1 6	0.385 8	8259.0	$2^{(+)}$	1779.030	2^{+}
6808.9 4	3.33 11	8588.80	3+	1779.030	2^{+}
(6876.99)	< 0.009	(6878.79)	3-	0.0	0^{+}
(7378.52)	< 0.015	(7380.59)	2+	0.0	0^{+}
7415.6 7	0.21 6	7415.9	2^{+}	0.0	0^{+}
7535.7 4	8.5 <i>3</i>	9315.78	3+	1779.030	2^{+}
7601.3 6	0.55 3	9381.2	2+	1779.030	2^{+}
(7697.81)	0.002 CA	9479.1	(2^{+})	1779.030	2^{+}
7932.1 4	2.15 11	7933.52	2+	0.0	0^{+}
8015.5 10	0.040 6	9795.8	(2^{+})	1779.030	2^{+}
8257.8 6	0.052 6	8259.0	$2^{(+)}$	0.0	0^{+}
8428.4 15	0.029 4	10208.8	(3 ⁺)	1779.030	2^{+}
8887.3 8	0.086 8	10667.99	$(2 \text{ to } 4)^+$	1779.030	2^{+}
9380.4 20	0.0202 25	9381.2	2+	0.0	0^{+}
9477.4 9	0.055 7	9479.1	(2^{+})	0.0	0^{+}
9791 [#] 4	0.013 3	9795.8	(2^{+})	0.0	0^+

[†] From 1982Wa05, 1972De28, and 1972Wi23. γ -ray intensities are converted for 100 ²⁸P ε decay. γ -ray intensities for expected γ rays are calculated from γ -ray branchings and intensity balance of the deexciting level. [‡] Absolute intensity per 100 decays. [#] Placement of transition in the level scheme is uncertain.

²⁸**P** ε decay 1996Og01,1982Wa05

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Legend

y Decay (Uncertain)	3	+	0 270.3 m	is 5
	$\% \epsilon + \% \beta^+ = 100$	Qε=14345.1 12		
	+	${}^{28}_{15}P_{13}$		
	/	$I\beta^+$	I۶	Log <i>ft</i>
(4^+)	12002	2.0 × 10-6	0.000000	4.07
$\frac{(1+1)^{-1}}{(4^{+})}$	12899	2.9 × 10 *	0.000020	4.87
(2 ⁺)	12725	0.00015	0.000072	4.44
	12714	0.000022	5.2×10^{-6}	5.68
(2^+)	12573	0.00034	0.000041	4.86
(4^{+})	12550	0.000064	$7.0 imes 10^{-6}$	5.64
$\frac{(2)}{(2^+)}$		0.0011	0.000081	4.63
$\frac{(2^+)}{(2^+)}$	12289	0.00068	2.1×10^{-6}	5.15 6.37
<u>5</u> /	11931	< 0.0009	< 0.00002	>5.6
$\underbrace{(2^+)}_{(2^+)} / \underbrace{(3^+)}_{(2^+)} \otimes \underbrace{(3^+)}_{($	11657	0.00024	2.3×10^{-6}	6.47
$(2^+) \qquad \qquad$	11515	0.000076	$5.8 imes 10^{-7}$	7.11
$\frac{(2 \text{ to } 4)^+}{(2 \text{ to } 4)^+} \overset{\text{gen}}{} \overset{\text{gen}}{ \overset{\text{gen}}{} \overset{\text{gen}}{}$	10667.99	0.30	0.00072	4.250
	<u>s^{ot} 10208.8</u>	0.029	0.000043	5.57
	9795.8	0.053	0.000054	5.56
	9479.1	0.065		5 64
3+	9315.78	11.3	0.0079	3.478
2 ⁺ 2 ⁺ 2 ⁺ 4 ⁺ 3 ⁺	$ \begin{array}{r} 7933.52 \\ \hline 7415.9 \\ 7380.59 \\ 6887.65 \\ \hline 6276.40 \\ \end{array} $	2.84 0.19 7.6	0.0010	4.67 6.03 4.788
4+	4617.53	1.29		5.99
	1779.030	69.1	0.00210	4.851
0+	0.0			
	0.0			
$^{28}_{14}{ m Si}_{14}$				

 $^{28}_{14}{\rm Si}_{14}$ -5

²⁸P ε decay 1996Og01,1982Wa05

²⁸P ε decay 1996Og01,1982Wa05

Decay Scheme (continued)

