Adopted Levels, Gammas

	Н	istory		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 114, 1189 (2013)	1-Apr-2013	

 $Q(\beta^{-})=122.8\times10^{2} \ I0; \ S(n)=3.82\times10^{3} \ I2; \ S(p)=20.63\times10^{3} \ 2I; \ Q(\alpha)=-9630 \ I50$ 2012Wa38

- 1979Sy01: First production of ²⁸Ne isotope from ⁴⁰Ar fragmentation via ¹²C(⁴⁰Ar,X) reaction, E=205 MeV/nucleon, deduced evidence for particle stability.
- 2007No13: ²⁸Ne production cross section ~0.1 μ b is measured in ⁴⁰Ar fragmentation via ⁹Be(⁴⁰Ar,X) reaction, E=90 MeV/nucleon and 94 MeV/nucleon.
- 2006Kh08: ²⁸Ne beam, E=44.65 and 38.98 MeV/nucleon, bombarded a Si target, measured σ =2376 mb 31 and σ =2423 mb 37, respectively, for the Si(²⁸Ne,X) reaction and a squared reduced-absorption radius of $r_0^2 = 1.253 \text{ fm}^2$ 12 is deduced and used to study the isospin dependence.

²⁸Ne Levels

Cross Reference (XREF) Flags

- A
- ¹H(²⁸Ne,²⁸Ne'γ) ⁹Be(²⁹Na,pγ),(³⁰Mg,2pγ) ⁹Be(²⁹Na,N27NE) В
- С
- Coulomb excitation D

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	20 ms 1	AB D	${}^{\%}\beta^{-}=100; {}^{\%}\beta^{-}n=12 I$ ${}^{\%}\beta^{-}2n=3.7 5$ $\delta < r^{2} > ({}^{20}Ne, {}^{28}Ne) = -0.239 \text{ fm}^{2} 35 \text{ (stat) } 213 \text{ (syst) } (2011Ma48).$ $T_{1/2}: \text{ Average of } 21 \text{ ms } I (2063\gamma - t) \text{ and } 19 \text{ ms } I (863\gamma - t) \text{ in } 2006\text{Tr}02. \text{ Others: } 18.4 \text{ ms } 5 (2005\text{Tr}05), 18 \text{ ms } 3 (1999\text{Re}16), 20 \text{ ms } 3 (1999\text{Dl}01), 21 \text{ ms } 5 (1997\text{Ta}22), 17 \text{ ms } 4 (1992\text{Te}03) \text{ and } 16 \text{ ms } 9 (1991\text{Re}02).$ ${}^{\%}\beta^{-}n: \text{ From } 2006\text{Tr}02 \text{ and } 2005\text{Tr}05. \text{ Others: } 11 3 (1999\text{Re}16,1999\text{Dl}01), \text{ and } 22 3 (1992\text{Te}03).$ ${}^{\%}\beta^{-}2n: \text{ From } 2006\text{Tr}02 \text{ Other: } 3 I (2005\text{Tr}05).$
0.0+x			В	Additional information 1.
1127+x 4			В	
1304 <i>3</i>	2+	5.7 ps 10	AB D	J ^{π} : 1304 γ E2 to 0 ⁺ state. T _{1/2} : Using B(E2) \uparrow =0.0132 23 (2005Iw02) and the adopted γ -ray properties.
3010 6	(4 ⁺)		AB	J^{π} : 4 ₁ + in ((²⁹ Na,p γ)–2007RoZY), based on comparison of the experimental level scheme with the predicted energies by shell model.
3904 7	(4+)		BC	XREF: C(3860). E(level): In 2007RoZY – (²⁹ Na,p γ) – 3904 keV 7 level is deduced from a single cascade of γ -ray measurements and identified as bound state. In 2012Sm08, 3860 keV 110 level is deduced from the measured decay energy of 32 keV 22 in the ²⁷ Ne+n system and the best fit. Considering Sn(²⁸ Ne) and the assumption of decay to the g.s., the state is interpreted as unbound in 2012Sm08. The level energies are statistically consistent and located within/around the neutron separation energy (3820 keV 120 – 2012Wa38). Evaluator assumes these states are same and may decay by competing γ rays and neutrons. For this to be significant, one expects the γ -decay lifetime to be short compare to the neutron-decay lifetime. Using the M1 strength in Table 6.1 (2007RoZY) and 894 γ , a γ -decay lifetime of 4.9 fs is estimated. Considering Γ =0.09 eV and J ^{π} =4 ⁺ from Table I (2012Sm08) for this state, a neutron-decay lifetime of 7.3 fs is calculated. J ^{π} : J ^{π} =4 ₂ +, based on comparison of the experimental level scheme with the predicted

Adopted Levels, Gammas (continued)

²⁸Ne Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments		
	_			energies and transition strengths from shell model (2007RoZY). For the 3860 keV level $J^{\pi}=2^+,3^+$, or 4^+ is suggested in 2012Sm08 from shell model calculations.		

[†] From a least-squares fit to γ -ray energies.

γ ⁽²⁸	Ne)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	J_f^π	Mult.	Comments
1127+x		1127 4	100	0.0+x			
1304	2+	1304 <i>3</i>	100	0.0	0+	E2	B(E2)(W.u.)=5.0 8 E_{γ} : Others: 1319 keV 22 ((²⁸ Ne, ²⁸ Ne' γ)–2006Do09) and 1320 keV 20 (Coulomb excitation-1999Pr09).
3010 3904	(4 ⁺) (4 ⁺)	1706 <i>5</i> 894 <i>4</i>	100 100	1304 3010	2 ⁺ (4 ⁺)		E_{γ} : Others: 1711 keV 30 ((²⁸ Ne, ²⁸ Ne'γ)–2006Do09). E_{γ} : Other: 936 28 (2005Be60). Placement of this γ ray is based on coincidence (better statistics) with 1706γ forming a single cascade in 2007RoZY. In contrary, the 936 keV γ ray (i.e. 894 keV γ ray in this dataset) is shown to feed the 2 ⁺ state at 1293 keV (1304 keV here), based on γγ coin of the 1293γ with both the 936γ and 1707γ (poor statistics) in 2005Be60.

[†] From ⁹Be(²⁹Na,pγ) (2007RoZY).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

