²⁸Na β⁻ decay 2012Ku11,1984Gu19

	Н	listory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 114, 1189 (2013)	1-Apr-2013

Parent: ²⁸Na: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=30.5$ ms 4; $Q(\beta^-)=14030 \ 10$; $\%\beta^-$ decay=100.0 Others: 1979De02, 1974Ro31.

Sum of decay energies of this dataset is 13992 keV 735 cf. 14030 keV 10 obtained from 28 Na β^- decay Q(g.s.) and branching.

2012Ku11: β^- decay is studied in polarized ²⁸Na isotope. It was produced from fragmentation of tantalum targets by 500 MeV protons at TRIUMF. Separated ²⁸Na⁺ beam, E=30.6 keV, was neutralized by colliding with the Na vapor and nuclear spin was polarized (\approx 50%) by collinear optical pumping. Polarized ²⁸Na beam was ionized and transported with the polarization direction perpendicular to the beam direction. The spin orientation was flipped by changing the laser helicity in every 5 minutes. The beam was focused and stopped on a Pt foil. E γ , I γ , $\beta^-\gamma$ and γ - γ coincidence measurements were performed using 9 HPGe detectors. A pair of plastic scintillators placed in front of each HPGe detectors. Deduced level scheme, J^{π}.

1984Gu19: ²⁸Na was produced from fragmentation of iridium target by 10 GeV protons from the CERN synchrotron, recoiled fragments were thermalized in graphite, ionized and mass-separated; a thin plastic scintillator, 2 Ge(Li) detectors, Measured: E γ , $\beta^{-}\gamma\gamma$ coin, I γ .

1979De02,1974Ro31: ²⁸Na was produced from fragmentation of uranium target by 24 GeV protons from the CERN synchrotron, recoiled fragments were thermalized in graphite, ionized and mass-separated; a thin plastic scintillator, 2 Ge(Li) detectors, Measured: $E\gamma$, $\beta^-\gamma\gamma$ coin, absolute I γ .

1984Gu19, 1979De02 and 1974Ro31 are all from the same research group.

²⁸Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}	20.915 h 9	4561.0 5	1 ⁺ @	5470.2 5	2
1473.55 10	2+ [@]		4878.7 13	2^{+}	5916.9 <i>11</i>	$(0,1,2)^+$ ^(a)
3862.15 15	0^{+} @		5171.5 5	3-	6545.0 <i>5</i>	(2^{+})
4021.1 5	4+		5193.1 5	1	7200.9 7	$(0,1,2)^+$
4554.6 5	2^{+}		5270.1 4	1^{+}	7461.8 5	$(2^+)^{\#}$

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels, except otherwise noted.

[#] Assigned in 2012Ku11, based on the angular distribution measurements of β and γ -ray emissions.

[@] Assignment reconfirmed in 2012Ku11, based on the angular distribution measurements of β and γ -ray emissions.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments	S
(6568 10)	7461.8	1.4 2	4.7 1	av Eβ=3054.9 50	
(6829 10)	7200.9	0.5 1	5.2 1	av $E\beta = 3183.5 50$	
(7485 10)	6545.0	0.2 1	5.8 2	av $E\beta = 3507.1 \ 50$	
(8113 10)	5916.9	0.3 1	5.8 2	av $E\beta = 3817.3 \ 50$	
(8560 10)	5470.2	< 0.1	>6.4	av $E\beta = 4038.0 \ 50$	
(8760 10)	5270.1	1.5 5	5.2 2	av $E\beta = 4136.9 \ 50$	
(8859 10)	5171.5	0.3 1	8.2^{1u} 2	av E β =4185.6 50	
(9151 10)	4878.7	0.2 1	6.2 2	av $E\beta = 4330.3 50$	
(9469 10)	4561.0	3.2 4	5.1 <i>I</i>	av $E\beta = 4487.450$	
(9475 10)	4554.6	1.00 25	5.6 1	av $E\beta = 4490.5 50$	
(10168 10)	3862.15	20.1 19	4.42 1	av $E\beta = 4832.9 \ 50$	
(12556 10)	1473.55	11 6	5.1 2	av $E\beta = 6013.7 \ 50$	
(14030 10)	0.0	60 5	4.6 1	av Eβ=6741.7 50	

Continued on next page (footnotes at end of table)

$^{28}\mathrm{Na}\,\beta^-$ decay 2012Ku11,1984Gu19 (continued)

β^{-} radiations (continued)

[†] Deduced by the evaluator from γ -ray intensity balance at each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{28}Mg)$

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1150.5 [#] 4 1373.4 2 1473.5 <i>I</i> 1990.7 5 2007.7 4 2191.7 3 2290.9 6	<0.1 <0.1 37 5 0.2 1 0.5 1 0.8 1 <01	5171.5 6545.0 1473.55 6545.0 7200.9 7461.8 7461.8	$ \frac{3^{-}}{(2^{+})} \\ \frac{2^{+}}{(2^{+})} \\ (0,1,2)^{+} \\ (2^{+}) \\ (2^{+}) $	4021.1 5171.5 0.0 4554.6 5193.1 5270.1 5171.5	$ \begin{array}{r} 4^+ \\ 3^- \\ 0^+ \\ 2^+ \\ 1 \\ 1^+ \\ 3^- \end{array} $	I _{γ} : 2012Ku11 used same value as in 1984Gu19.
2388.5 [#] 1 2547.7 [#] 6 2906.9 6	<0.1 22 <i>3</i> <0.1 0.6 <i>1</i>	3862.15 4021.1 7461.8	(2^{+}) 0^{+} 4^{+} (2^{+})	1473.55 1473.55 4554.6	2 ⁺ 2 ⁺ 2 ⁺	I _γ : Other: 18.7 25 (1984Gu19).
3082.4 [#] 11 3087.3 [#] 5 3404.9 13 3696.8 [#] 6 3996.3 5 4443.0 11	1.3 3 4.0 6 0.2 1 0.3 1 <0.1 0.3 1	4554.6 4561.0 4878.7 5171.5 5470.2 5916.9	2^+ 1^+ 2^+ 3^- 2 $(0,1,2)^+$	1473.55 1473.55 1473.55 1473.55 1473.55 1473.55	2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺	I_{γ} : Other: 2.7 <i>4</i> (1984Gu19). I_{γ} : Other: 2.6 <i>5</i> (1984Gu19).
5192.6 5 5269.6 4	0.4 <i>1</i> 2.3 <i>4</i>	5193.1 5270.1	1 1 ⁺	0.0 0.0	0+ 0+	E_{γ} : Weighted average of 5269.1 keV 5 (2012Ku11) and 5271.7 keV 10 (1984Gu19). I_{γ} : From 2012Ku11. Other: 0.50 15 (1984Gu19).

[†] From 2012Ku11, except otherwise noted. Some γ -ray energies in 2012Ku11 are discrepant compared to 1984Gu19 or other datasets. The source of the discrepancy is not clear.

[‡] From 2012Ku11, except otherwise noted. γ -ray intensities reported in 2012Ku11 and 1984Gu19 are mostly in agreement, except a few. [#] From Adopted Gammas.

[@] Absolute intensity per 100 decays.

28 Na β^- decay 2012Ku11,1984Gu19

