⁹Be(²⁹Ne,N27F) 2012Ch12,2012Ch02,2005Sc20

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 114, 1189 (2013)	1-Apr-2013	

2012Ch12,2012Ch02: ${}^{9}\text{Be}({}^{29}\text{Ne},n^{27}\text{F})$: ${}^{29}\text{Ne}$ was produced from the ${}^{48}\text{Ca}$ primary beam, E=140 MeV/u, fragmentation on a Be target. Reaction products were separated using the A1900 fragment separator at NSCL. Secondary beam of ${}^{29}\text{Ne}$, E=62 MeV/u, bombarded another Be target and one-proton knock out produced states of ${}^{28}\text{F}$. Fragments, neutrons and γ rays were detected in coincident mode. The γ rays were detected using an array of cesium iodide detectors. Neutrons were detected in the Modular Neutron Array; The decay energy of the breakup of the unbound states in ${}^{28}\text{F}$ was deduced from the invariant mass analysis. No γ -ray events were recorded in the caesar array in the coincidence mode. Resonant states were modeled by Breit-Wigner line shape with energy dependent width, derived from R-matrix analysis.

2005Sc20: Secondary beam of ²⁹Ne was produced from the ⁴⁸Ca primary beam, E=142 MeV/u, fragmentation on a Be target. The reaction products were separated using the A1900 fragment separator at NSCL. An attempt of a p-stripping reaction of the ²⁹Ne secondary beam on a C target shows no evidence of ²⁸F in the mass-indicator spectra. An upper limit for inclusive cross section of 1.2 mb is extracted in 2005Sc20 and conclude that ²⁸F is most likely unbound, since such upper limit is sufficiently small compared to common estimates.

²⁸F Levels

E(level)	T _{1/2}	Comments
0.0	≈0.046 as	E(level): From 220 keV 50 resonance energy. g.s. of ²⁸ F is neutron unbound. A resonance in the ²⁷ F+n continuum at 220 keV 50, $\Gamma_0=10$ keV, is determined in 2012Ch02 (²⁹ Ne,n ²⁷ F). This resonance energy is referred to be the g.s. of ²⁸ F in 2012Ch02 and in good agreement with shell model predictions. T _{1/2} : Deduced by the evaluator from $\Gamma_0=10$ keV (2012Ch02).
590 <i>50</i>	≈0.0046 as	E(level): From 810 keV resonance energy. This upper resonance energy at 810 keV, $\Gamma_0=100$ keV, is also deduced in the ²⁷ F+n continuum (²⁹ Ne,n ²⁷ F). It is speculated in 2012Ch02 that contributions from other unresolved resonances may be present, since stronger population of this excited resonance state was not expected. T _{1/2} : Deduced by the evaluator from $\Gamma_0=100$ keV (2012Ch02).