Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 156, 70 (2019) 31-Jan-2019

 $Q(\beta^{-}) = -650 \text{ SY}; S(n) = 5300 \text{ SY}; S(p) = 3050 \text{ SY}; Q(\alpha) = 9630 \text{ 50}$ 2017Wa10

Estimated uncertainties (2017Wa10): $\Delta Q(\beta^-)=880$, $\Delta S(n)=940$, $\Delta S(p)=820$.

S(2n)=11720~820 (syst, 2017Wa10). S(2p)=8010 (theory, 1997Mo25).

Others: 9580 keV 30 (2017Og01 review) from $E\alpha = 9.38-9.55$ MeV.

2010Og01, 2011Og04: 278 Mt from α decay chain: 294 Ts \rightarrow 290 Mc \rightarrow 286 Nh \rightarrow 282 Rg \rightarrow 278 Mt. 294 Ts formed and identified in reaction 249 Bk(48 Ca,3n), E=247 MeV at FLNR-JINR-Dubna using Dubna gas-filled recoil separator (DGFRS). Measured E α , half-lives, α - α correlations. One decay chain was assigned to the decay of 294 Ts. See details in 294 Ts Adopted Levels.

2012Og06, 2013Og04, 2013Og01: ²⁷⁸Mt formed in the decay chain of ²⁹⁴Ts as above in 2011Og04. See details in ²⁹⁴Ts Adopted Levels. Three decay chains were reported.

2014Kh04: ²⁷⁸Mt from α decay chain: ²⁹⁴Ts → ²⁹⁰Mc → ²⁸⁶Nh → ²⁸²Rg → ²⁷⁸Mt; ²⁹⁴Ts formed and identified in reaction ²⁴⁹Bk(⁴⁸Ca,3n),E=252.1, 254.0, 258.0 MeV at GSI using Gas-filled Trans-Actinide Separator and Chemistry Apparatus (TASCA). Four decay chains were assigned to the decay of ²⁹⁴Ts, but only two reported in the paper. See details for ²⁹⁴Ts Adopted Levels.

One EVR-α-SF correlated decay chain reported by 2011Og04, three by 2013Og04 and 2012Og06, and two by 2014Kh04, all starting with the decay of ²⁹⁴Ts and ending in SF-decaying ²⁷⁰Db nuclide in Dubna work (2013Og04, 2011Og04) and in SF-decaying ²⁶⁶Lr in GSI work (2014Kh04). 2011Og07 and 2012OgZZ are also related reports for the Dubna work. See Adopted Levels for ²⁹⁴Ts for details of above three studies.

For theoretical studies, consult Nuclear Science References (NSR) database at NNDC, BNL for 47 primary references dealing with the half-lives and other aspects of nuclear structure in this mass region.

²⁷⁸Mt Levels

Cross Reference (XREF) Flags

A 282 Rg α decay (100 s)

E(level) $T_{1/2}$ XREF 0 4.5 s +35-13 A

Comments

Only the α decay mode observed with no SF events detected.

%α≈100; %SF=?

E(level): the observed α activity is assumed to correspond to the ground state of 278 Mt.

 $T_{1/2}$: from 2017Og01 and 2015Og05 reviews. Measurements: 7.7 s +370–35

 $(2011 \log 04, 2011 \log 07, 2012 \log ZZ, \text{ from one decay chain}); 5.2 \text{ s} +62-18$

(2012Og06,2013Og04,2013Og01, from three out of four decay chains observed); 3.6 s +65-14 (2014Kh04 from four decay chains, also report 4.4 s +36-14 by combining their data with those from 2013Og04).

 J^{π} : 3⁻,6⁻ from $\Omega(\text{proton})=9/2^{-}$, $\Omega(\text{neutron})=3/2^{+}$ (1997Mo25, theory).

 $\rm E\alpha$ =9.38-9.55 MeV (2017Og01,2015Og05 reviews) from decay of $\rm ^{278}Mt$. Measured $\rm E\alpha$ =9.55 MeV $\rm ^{19}$ (2010Og01,2011Og04,2011Og07,2012OgZZ); 9.38-9.55 MeV (2013Og04,2012Og06; from decay of $\rm ^{278}Mt$ for three events out of a total of 4 events observed); 9.45 MeV $\rm ^{3}$ (2014Kh04).