Adopted Levels

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 156, 70 (2019)	31-Jan-2019			

 $Q(\beta^{-}) = -5600 SY; S(n) = 7520 SY; S(p) = 3650 SY; Q(\alpha) = 9070 40$ 2017Wa10

Estimated uncertainties (2017Wa10): $\Delta Q(\beta^{-})=300$, $\Delta S(n)=280$, $\Delta S(p)=450$.

S(2n)=13860 380, S(2p)=6270 530 (syst, 2017Wa10).

2006Dv01, 2008Dv02: ²⁷⁰Hs produced and first identified in ²⁴⁸Cm(²⁶Mg,4n),E=193,185 MeV reaction at GSI, and assignment to the isotope made through the observation of four correlated (α -SF) decay chains in 2006Dv01, and two in 2008Dv02 which were attributed to ²⁷⁰Hs on the basis of α particle decay to ²⁶⁶Sg, which decays by SF mode. Rapid chemical separation and on-line detection method used for isolation of Hs. Detection system was a linear array of Passivated Implanted Planar Silicon (PIPS) detectors. In this experiment eight other correlated chains were assigned to ²⁶⁹Hs, one tentatively to ²⁷¹Hs, and two were unassigned, one of which could possibly belong to ²⁷⁰Hs.

The following α -SF correlated decay chains were assigned to ²⁷⁰Hs (2006Dv01):

Event #1: $E(^{26}Mg)=145$ MeV.

 E_{α} =8.85 MeV, assigned to ²⁷⁰Hs.

 E_{SF} =100 and 74 MeV, Δt_2 =1.62 s, assigned to ²⁶⁶Sg.

Event #2: $E(^{26}Mg)=136$ MeV. $E_{\alpha}=8.90$ MeV, assigned to 270 Hs. $E_{SF}=89$ and 55 MeV, $\Delta t_2=49.6$ ms, assigned to 266 Sg.

Event #3: $E(^{26}Mg)=136$ MeV. $E_{\alpha}=8.92$ MeV, assigned to 270 Hs. $E_{SF}=106$ and 82 MeV, $\Delta t_2=449$ ms, assigned to 266 Sg.

Event #4: $E(^{26}Mg)=136$ MeV. $E_{\alpha}=8.88$ MeV, assigned to 270 Hs. $E_{SF}=96$ and 110 MeV, $\Delta t_2=444$ ms, assigned to 266 Sg.

The following α -SF correlated decay chains were assigned to ²⁷⁰Hs (2008Dv02): Event #1: E(²⁶Mg)=140 MeV. E $_{\alpha}$ =8.76 MeV 20, assigned to ²⁷⁰Hs. E_{SF}=58 and 61 MeV, Δ t₂=275 ms, assigned to ²⁶⁶Sg.

Event #2: $E(^{26}Mg)=140$ MeV. $E_{\alpha}=8.81$ MeV 16, assigned to 270 Hs. $E_{SF}=92$ and 111 MeV, $\Delta t_2=271$ ms, assigned to 266 Sg.

2010Gr04: ²⁷⁰Hs produced in ²³⁸U(³⁶S,4n),E=175-197 MeV in mid-target corresponding to excitation energy of E*=39 MeV 4, close to the predicted maxima of the 4n- and 5n-evaporation channels. Experiments carried out using UNILAC and highly efficient chemical separation and detection system COMPACT connected to a recoil chamber at GSI. One decay chain ²⁷⁰Hs \rightarrow ²⁶⁶Sg was assigned to ²⁷⁰Hs with a production σ =0.8 pb +26–7, half-life of ²⁷⁰Hs=23 s, and E α =8.88 MeV. See also 2012Tu01.

2013Og03: ²⁷⁰Hs isotope produced in ²²⁶Ra(⁴⁸Ca,4n) reaction.

 $E(^{48}Ca)=229$, 234, 241 MeV provided by the U400 cyclotron of the FLNR-JINR facility. Targets=0.12 and 0.18 mg/cm² ²²⁶Ra. Separation of evaporation residues (EVR) and beam particles using Dubna gas-filled recoil separator (DGFRS). Measured E α , I α , fission fragments, EVR- α and EVR-SF correlated events, time-of-flight, $T_{1/2}$, production σ . Particle and α detected by an array of semiconductor detectors.

History of six correlated decay chains of EVR- α -SF type (2013Og03): Event #1: E(EVR)=11.537 MeV. E_{α} =8.923 MeV, Δt_{α} =1.8537 s, assigned to ²⁷⁰Hs.

Adopted Levels (continued)

 E_{SF} =165.2 MeV, Δt_{SF} =0.9196 s, assigned to ²⁶⁶Sg.

Event #2: E(EVR)=11.356 MeV. E_{α} =9.133 MeV, Δt_{α} =31.9395 s, assigned to ²⁷⁰Hs. E_{SF}=148.7 MeV, Δt_{SF} =0.7517 s, assigned to ²⁶⁶Sg.

Event #3: E(EVR)=11.461 MeV. E_{α} =9.024 MeV, Δt_{α} =9.7087 s, assigned to ²⁷⁰Hs. E_{SF}=>187.9 MeV, Δt_{SF} =0.0708 s, assigned to ²⁶⁶Sg.

Event #4: E(EVR)=13.864 MeV. E_{α} =8.991 MeV, Δt_{α} =7.3538 s, assigned to ²⁷⁰Hs. E_{SF} =196.3 MeV, Δt_{SF} =0.3081 s, assigned to ²⁶⁶Sg.

Event #5: E(EVR)=13.812 MeV. E_{α} =9.009 MeV, Δt_{α} =8.1642 s, assigned to ²⁷⁰Hs. E_{SF}=168.6 MeV, Δt_{SF} =0.2450 s, assigned to ²⁶⁶Sg.

Event #6: E(EVR)=15.993 MeV. E_{α} =8.940 MeV, Δt_{α} =6.4194 s, assigned to ²⁷⁰Hs. E_{SF}=193.9 MeV, Δt_{SF} =0.1629 s, assigned to ²⁶⁶Sg.

Earlier studies where production of ²⁷⁰Hs was claimed in experiments at GSI, but later reassigned to ²⁶⁹Hs in further experiments at GSI (2006Dv01, 2008Dv02), later confirmed by 2013Og03 in experiments at Dubna:

2002Du21, 2003Tu05, 2003Du27 (also 2003Kr24 review): production of ²⁷⁰Hs reported in ²⁴⁸Cm(²⁶Mg,4n),E=143.7-146.8 MeV followed by chemical procedures employing gas chromatography undertaken at GSI using the UNILAC facility. Two correlated decay chains were tentatively assigned to ²⁷⁰Hs, with a production cross-section of 4 pb for ²⁷⁰Hs. Measured $E\alpha$ =9.16 MeV +7–3, and α -decay half-life=3.6 s +8–14 for the decay of ²⁷⁰Hs. In later experiments by 2006Dv01, the two chains reported by 2003Tu05 were reassigned to ²⁶⁹Hs, instead.

Additional information 1.

2004Ga18: measured yield.

2004Vo24: this experiment reports mainly the chemistry of Z=108 (Hs) element through the formation of 269 Hs or 270 Hs in 248 Cm(26 Mg,4n) at GSI. Three α - α -SF correlated events were assigned to the decay of 269 Hs or 270 Hs.

For theoretical studies, consult Nuclear Science References (NSR) database at NNDC, BNL for 122 primary references dealing with the half-lives and other aspects of nuclear structure in this mass region.

²⁷⁰Hs Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	0+	7.6 s +49–22	$%\alpha$ >50; %SF<50 (2013Og03) E(level): the observed α activity is assumed to correspond to the ground state of ²⁷⁰ Hs. T _{1/2} : α-decay half-life (2013Og03,2011Og07) from six correlated events. Other: 7.6 s +52–22 (2012Tu01, analysis of events from different studies). Average production σ =16 pb +13–7 (2013Og03) at 41-MeV excitation energy. Production cross section (at E(²⁶ Mg)=136 MeV)=3 pb (2006Dv01). Measured Eα=9020 80 (2013Og03) from α decay of ²⁷⁰ Hs. Other: 8.93 MeV 10 (2012Tu01).