Adopted Levels, Gammas

	Н	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 112,1875 (2011)	30-Nov-2010

 $Q(\beta^{-})=1.255\times10^{4}$ 7; $S(n)=1.51\times10^{3}$ 7; $S(p)=1.892\times10^{4}$ 11; $Q(\alpha)=-1.001\times10^{4}$ 12 2012Wa38

Note: Current evaluation has used the following Q record 12553 65 1515 6818.92E3 10-10.01E3 11 2011AuZZ.

 $Q(\beta^{-})=12590 \ 110, \ S(n)=1430 \ 110, \ S(p)=18490 \ 200 \ Q(\alpha)=-9970 \ 160 \ (2003Au03).$

Some recent nuclear structure calculations: 2006Ko02, 2004Ge02, 2004La24.

Atomic mass excess measurement: 7020 keV 70 (2007Ju03).

2010Ro23: Measured one-neutron knock out cross section for 39 neutron rich isotopes, ranging from carbon to aluminium, and with neutron numbers from 8 to 22. For ²⁷Ne the measured one-neutron knock out cross section is 102(12) mb on a beryllium target.

Production cross section ~0.1 μ b, measured from ⁴⁰Ar fragmentation reactions of both ⁹Be(⁴⁰Ar,X), E=90 α MeV, and ¹⁸¹Ta(⁴⁰Ar,X), E=94 α MeV – 2007No13.

48.01 MeV/u and 41.94 MeV/u beams of ²⁷Ne on a Si target, measured σ =2346 (39) mb and σ =2356 (37) mb, respectively, for the Si(²⁷Ne,x) reaction (2006Kh08). A squared reduced absorption radius of r_0^2 =1.250 (14) fm² is deduced and used to study the isospin dependence.

2005Be60: 9 Be(36 S,X γ): 27 Ne obtained from fragmentation of a 36 S beam at 77.5 MeV/nucleon on a Be target at GANIL selected through the α spectrometer; Detector: a 74 BaF₂ detector array and 4 HPGe detectors; reports the 772 (7) keV γ -ray of 27 Ne.

2005Iw02: Pb,C(²⁸Ne,²⁷Ne γ): ²⁷Ne was identified as contaminant from the 870 keV 16 γ -ray in the Pb,C(²⁸Ne,²⁸Ne γ) reaction. ²⁸Ne beam was produced by fragmentation of an ⁴⁰Ar beam, E=95 MeV/u, on Be target, separated in the RIPS facility at RIKEN; reports the 870 (16) keV γ -ray of ²⁷Ne.

²⁷Ne Levels

Cross Reference (XREF) Flags

A	⁹ Be(²⁸ Ne, ²⁷ Neγ), ¹ H(²⁸ Ne, ²⁷ Neγ)
3	2 H(26 Ne, 27 Ne γ)	

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	L	S	XREF	Comments
0.0	(3/2+)	31.5 ms <i>13</i>			AB	$%β^-=100; %β^-n=2.0 5$ $J^{\pi}: \log ft=4.4 \text{ in } {}^{27}\text{Ne} β^- \text{ decay to the g.s. } (J^{\pi}=5/2^+) \text{ of } {}^{27}\text{Na.}$ $J^{\pi}({}^{21}\text{Ne})=3/2^+.$ $T_{1/2}: \text{ from 2006Tr02 } (63γ-t). \text{ Others: } 32 \text{ ms } 2 \text{ (1992Te03), } 22 \text{ ms } 6 \text{ (2001Pe14, 1999D101).}$ $%β^-\text{n: from 1992Te03. \text{ Others: } 3 1 \text{ (2006Tr02), } <3 \text{ (2001Pe14, 1999D101).}$
765 1	(3/2 ⁻)		(0,1)	0.32 4	AB	J^{π} : from (d,p) cross section in inverse kinematics reaction of ${}^{2}\text{H}({}^{26}\text{Ne}, {}^{27}\text{Ne}\gamma)$ and multipolarity constraints for 765 γ , 120 γ and 885 γ to the g.s. $J^{\pi}=(3/2^+)$, $J^{\pi}=(1/2,3/2,5/2)^-$ proposed in 2006Ob01. $J^{\pi}=(3/2^-)$ is supported by shell model calculation (2006Te04) with a configuration: $vp_{3/2}$ and L=(0,1) from (${}^{1}\text{H}({}^{28}\text{Ne}, {}^{27}\text{Ne}\gamma))$ reaction study.
885 2	(1/2+)	<10 ps	(0,1)	1.07 7	AB	J^{π} : From comparison of the experimental level energy with the shell model calculation. $T_{1/2}$: The upper limit of $T_{1/2}$ for this state is proposed in 2006Te04 based on the symmetric shape of the 885-keV photopeak.
^{\dagger} From γ -ray energies.						

Adopted Levels, Gammas (continued)

$\gamma(^{27}\text{Ne})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.#	Comments
765 885	$(3/2^{-})$ $(1/2^{+})$	765 <i>1</i> 119 885 2	24 <i>3</i> 100 <i>3</i>	0.0 765 0.0	$(3/2^+)$ $(3/2^-)$ $(3/2^+)$	D D+Q	E_{γ} : From ⁹ Be(²⁸ Ne, ²⁷ Ne γ) (2006Te04).

[†] From ²H(²⁶Ne,²⁷Neγ), except otherwise noted.
[‡] From ⁹Be(²⁸Ne,²⁷Neγ),¹H(²⁸Ne,²⁷Neγ).
[#] Proposed in 2006Te04 ((²⁸Ne,²⁷Neγ),(²⁸Ne,²⁷Neγ)), on the basis of 119γ and 885γ branching ratio from the 885-keV level and the upper limit of the level half-life.

²⁷₁₀Ne₁₇