²⁷Ne β^- decay 2006Tr02

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	M. Shamsuzzoha Basunia	NDS 112, 1875 (2011)	30-Nov-2010						

Parent: ²⁷Ne: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=31.5$ ms *13*; $Q(\beta^-)=12.59\times10^3$ *11*; $\%\beta^-$ decay=100.0 ²⁷Ne- $\%\beta^-$ decay: $\%\beta$ -n=3 *1* (2006Tr02).

²⁷Ne isotope was produced from fragmentation of ⁴⁸Ca beam on a Be target, E=140 MeV/u, at NSCL; Fragments were separated by the A1900 fragment separator and identified by energy loss in ΔE-E detector, and by time of flight; Detector: double sided Si microstrip detector (DSSD), an array of 12 HPGe detectors, β⁻ counting system; Measured Eγ, Eβ, Iγ, Iβ, β⁻γγ coin.

²⁷Na Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	E(level) [†]
0	$ \frac{5/2^+}{(3/2^+)} \\ (1/2^+) $	2192.1 <i>12</i>	3019.2 8	3685.3 10
63.0 7		2288.1 <i>12</i>	3508.2 <i>10</i>	3781.3 10
1728.1 8		2799.2 8	3582.3 <i>10</i>	4355.2 16

[†] From a least-squares adjustment to $E\gamma$, $\Delta E=1$ keV is assumed by the evaluator.

[‡] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(8.23×10 ³ 11)	4355.2	>3.0	<4.8	av Eβ=3880 55
				$I\beta^{-}$: >3.0 5 in figure 13 of 2006Tr02.
(8.81×10 ³ 11)	3781.3	3.0 6	4.96 10	av E β =4163 55
$(8.90 \times 10^3 \ 11)$	3685.3	2.6 6	5.04 11	av E β =4211 55
$(9.01 \times 10^3 \ 11)$	3582.3	1.3 4	5.36 14	av E β =4262 55
$(9.08 \times 10^3 \ 11)$	3508.2	1.6 4	5.29 12	av E β =4298 55
$(9.57 \times 10^3 \ 11)$	3019.2	11.0 10	4.56 5	av E β =4540 55
$(9.79 \times 10^3 \ 11)$	2799.2	8.9 9	4.70 6	av E β =4649 55
$(1.030 \times 10^4 \ II)$	2288.1	1.1 6	5.71 24	av E β =4902 55
$(1.040 \times 10^4 \ II)$	2192.1	0.9 6	5.8 <i>3</i>	av E β =4949 55
$(1.086 \times 10^4 \ II)$	1728.1	3.4 5	5.33 7	av E β =5179 55
$(1.253 \times 10^4 \ II)$	63.0	4.2 13	5.54 14	av E β =6002 55
$(1.259 \times 10^4 \ II)$	0	59.5 30	4.40 4	av E β =6034 55

[†] From γ -ray intensity balance to each level and estimated neutron emission probability of 3(1)%. (2006Tr02).

[‡] Absolute intensity per 100 decays.

$\gamma(^{27}\text{Na})$

I γ normalization: Measured absolute γ -ray intensities (2006Tr02).

Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
63 1665 1728 2067 2129	21.1 7 3.0 5 0.43 17 3.2 5 0.98 28	63.0 1728.1 1728.1 4355.2 2192.1	$(3/2^+) (1/2^+) (1/2^+)$	$ \begin{array}{c} 0 \\ 63.0 \\ 0 \\ 2288.1 \\ 63.0 \\ \end{array} $	$5/2^+$ (3/2 ⁺) $5/2^+$ (3/2 ⁺)	(M1+E2)	Mult.: From Adopted Gammas.

Continued on next page (footnotes at end of table)

						²⁷ Ne	B ⁻ decay	2006Tr02 (continued)			
							$\gamma(^{27}N)$	Na) (continu	ied)		
Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2225	4.3 6	2288.1	_	63.0	$(3/2^+)$	3508	1.6 4	3508.2	-	0	$5/2^{+}$
2736	5.98	2799.2		63.0	$(3/2^+)$	3582	1.3 4	3582.3		0	$5/2^+$
2799	3.0 5	2799.2		0	5/2+	3685	2.6 6	3685.3		0	$5/2^+$
2956	2.7 5	3019.2		63.0	$(3/2^+)$	3781	3.2 6	3781.3		0	$5/2^{+}$
3019	8.4 9	3019.2		0	$5/2^{+}$						

 † Based on a private communication (e-mail) of the XUNDL data compilation group with V. Tripathi, May 9, 2006. ‡ Absolute intensity per 100 decays.

²⁷Ne β^- decay 2006Tr02

²⁷₁₁Na₁₆