Adopted Levels, Gammas

	Н	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 112,1875 (2011)	30-Nov-2010

 $Q(\beta^{-})=9069 4$; S(n)=6728 6; S(p)=13286 19; $Q(\alpha)=-1.126\times 10^{4} 5$ 2012Wa38

Note: Current evaluation has used the following Q record 9068 4 6728 5 13286 19-112.5E210 2011AuZZ.

 $S(p)=13240 \ 30, \ Q(\alpha)=-11270 \ 80 \ 2003Au03.$

Some recent nuclear structure calculations: 2006Ko02, 2004Ge02, 2004La24.

2010Ro23: Measured one-neutron knock out cross section for 39 neutron rich isotopes, ranging from carbon to aluminium and with neutron numbers from 8 to 22. For ²⁷Ne, the measured one-neutron knock out cross section is 64(8) mb on a beryllium target.
²⁷Na matter radii: 2.95 fm 4 (1998Su07); ²⁷Na charge radii: 3.01 fm 5 (2004An14).

Production cross section ~0.1 μ b and ~0.5 μ b, measured in ⁴⁰Ar fragmentation through ⁹Be(⁴⁰Ar,X), E=90 α MeV, and ¹⁸¹Ta(⁴⁰Ar,X), E=94 α MeV, reactions, respectively – 2007No13.

In 2006Kh08, 57.92 MeV/u and 50.65 MeV/u beams of ²⁷Na impinged on a Si target, measured σ =2099 (86) mb and σ =2192 (31) mb, respectively, for the Si(²⁷Na,x) reaction and a squared reduced absorption radius of r_0^2 =1.172 (16) fm² is deduced and used to study the isospin dependence.

g-factor measurement: 1.557 3 (2001Ne03), 1.558 2 (1978Hu12).

²⁷Na Levels

Cross Reference (XREF) Flags

					A 27 Ne β^- decay D 24 H $({}^{26}$ Ne,n $\gamma)$ B 28 Ne β^- n decay E 14 C $({}^{14}$ C,p $\gamma)$ C 29 Ne β^- 2n decay F 26 Mg $({}^{18}$ O, 17 F)
E(level) [†]	J ^π @	T _{1/2}	XR	EF	Comments
0.0#	5/2+	301 ms 6	ABCI	DEF	$%β^-=100; %β^-n=0.13 4$ μ=+3.895 5; Q=-0.007 3 J ^π : J=5/2 from laser spectroscopy (1978Hu12), positive parity based on the logft=4.3 and 5.0 to 3/2 ⁺ and 5/2 ⁺ states, respectively, of ²⁷ Mg in ²⁷ Na β ⁻ decay. Configuration: πd _{5/2} . T _{1/2} : weighted average of 280 ms 20 (1973Al13), 304 ms 7 (1974Ro31) and 295 ms 20 (1986Du07). %β ⁻ n: From 1984Gu19. μ: From 1978Hu12. Other: 3.894 3 (2000Ke09). Q: From 2000Ke09 (β − NMR). Other: Q=-0.03 5, recalculated value in 2000Ke09 from Q=0.06 5 (1982Tp05) using a recent reference value of ²³ Na
62.9 6	$(3/2^+)$		ABCI	DE	J^{π} : From an analog state at 90 keV of $J^{\pi}=3/2^+$ in ²⁵ Na and shell-model calculations (2002Co11). 63 γ (M1+E2) to 5/2 ⁺ state.
1728.0 8	(1/2 ⁺)		A I	DEF	J^{π} : $J^{\pi}=1/2^{-}$ for this state is proposed in 2002Co11 ($^{14}C(^{14}C,p\gamma)$); in inverse kinematics reaction of $^{2}H(^{26}Ne,n\gamma)$ the state was mainly produced via direct (d,n) reaction and should be a proton particle state and assigned a positive parity in 2006Ob05. In shell model calculation a $1/2^{+}$ state at 1630 keV has been predicted with a configuration of $\pi(d_{5/2})^{2}(s_{1/2})^{1}$.
1815.7 9	$[1/2^+]$			Е	
2191.8 10	$(7/2^+)$		A	EF	J^{π} : 2129 γ (E2) to (3/2 ⁺) state.
2224.2 [#] 9	$(9/2^+)$			E	J^{π} : 2224 γ (E2) to 5/2 ⁺ state. Band member.
2287.9 12			Α		
2729.1 [‡] 10	$[5/2^+]$			Ε	
2799.1 8			Α		
3019.1 8 3508.2 <i>10</i>	[3/2 ⁺]		A A	E	

Continued on next page (footnotes at end of table)

Adopted Levels	, Gammas	(continued)
----------------	----------	-------------

E(level) [†]	J ^π @	XI	REF	E(level) [†]	J ^{π @}	XREF
3582.3 10		A		5190.4 [#] <i>13</i>	[13/2 ⁺]	Е
3638.3 10			Е	5408.9 10	$[11/2^+]$	Е
3657.2 13	$[9/2^+]$		Е	5590 50	. , .	F
3685.3 10	., .	Α		5704.6 8	$[11/2^+]$	Е
3781.3 10		Α	F	5762.7 10		Е
3837.8 14	$[5/2^+]$		Е	5948.0 12	$[9/2^+]$	Е
4235.4 9	$[7/2^+]$		Ε	6158.7 8	[9/2 ⁺]	Е
4355.0 16		Α		6518.4 [‡] <i>15</i>	$[5/2^+]$	Е
4525.4 10			E	6742.1 12	$[7/2^+, 9/2, 11/2^+]$	E
4716.7 9	[3/2+]		Е	9186.7 [#] 17	[17/2 ⁺]	Е
4980 <i>50</i>			F			

²⁷Na Levels (continued)

[†] From a least-square fit to γ -ray energies, assuming $\Delta E=1$ keV for all γ -rays.

[‡] Depopulating γ -ray from this level has been shown to feed the g.s. in the decay scheme (¹⁴C,p γ). If the γ -ray feeds the 62.9 keV state, then the energy of the state would be 62.9 keV higher, indicated in 2002Co11.

[#] g.s. band.

^(a) J^{π} between brackets are assigned mainly from a comparison of shell model level energies with experimental levels (2002Co11 – (¹⁴C,p γ)).

$\gamma(^{27}$	'Na)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@
62.9 1728.0	$(3/2^+)$ $(1/2^+)$	63 1665	100 100 <i>17</i>	0.0 62.9	5/2 ⁺ (3/2 ⁺)	(M1+E2)
1815.7 2191 8	$[1/2^+]$ $(7/2^+)$	1728 1753 [‡] 2129	14 7 100 100	0.0 62.9 62.9	$5/2^+$ $(3/2^+)$ $(3/2^+)$	(E2)
2224.2 2287.9	$(9/2^+)$	2224 [‡] 2225	100 100	0.0 62.9	$(3/2^+)$ $(3/2^+)$	(E2) (E2)
2729.1 2799.1	[5/2+]	2729 [‡] 2736	100 100 <i>14</i>	0.0 62.9	$5/2^+$ (3/2 ⁺)	
3019.1	[3/2 ⁺]	2799 2956 3019	51 8 32 6 100 <i>11</i>	62.9 0.0	$5/2^+$ $(3/2^+)$ $5/2^+$	
3508.2 3582.3		3508 3582	100 100	0.0 0.0	5/2+ 5/2+	
3638.3 3657.2 3685.3 3781.3	[9/2 ⁺]	3638+ 1433 [‡] 3685 3781	100 100 100 100	0.0 2224.2 0.0 0.0	5/2 ⁺ (9/2 ⁺) 5/2 ⁺ 5/2 ⁺	
3837.8 4235.4 4355.0	[5/2 ⁺] [7/2 ⁺]	1646 [‡] 4235 [‡] 2067	100 100 100	2191.8 0.0 2287.9	(7/2 ⁺) 5/2 ⁺	
4525.4 4716.7	[3/2 ⁺]	4525 [‡] 2901 [#] 4716 [#]	100 35 [#] 100 [#]	0.0 1815.7	5/2 ⁺ [1/2 ⁺]	
5190.4 5408.9	[13/2 ⁺] [11/2 ⁺]	2966 [‡] 3217 [‡]	100 100 100	2224.2 2191.8	$(9/2^+)$ $(7/2^+)$	

Adopted Levels, Gammas (continued)

					$\gamma(^{27}\text{Na})$ (c
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
5704.6	[11/2+]	1469 [#]	61 [#]	4235.4	[7/2+]
		3480 [#]	100 [#]	2224.2	$(9/2^+)$
5762.7		5762 [‡]	100	0.0	5/2+
5948.0	[9/2+]	539 <mark>‡</mark>	100	5408.9	$[11/2^+]$
6158.7	[9/2 ⁺]	454 [#]	100 [#]	5704.6	$[11/2^+]$
		750 [#]	50 #	5408.9	$[11/2^+]$
		6158 [#]	50 #	0.0	5/2+
6518.4	[5/2+]	3789 [‡]	100	2729.1	[5/2+]
6742.1	[7/2+,9/2,11/2+]	794 [#]	79 [#]	5948.0	[9/2 ⁺]
		4550 [#]	100 [#]	2191.8	$(7/2^+)$
9186.7	[17/2 ⁺]	3996 [‡]	100	5190.4	[13/2+]

[†] From ²⁷Ne β^- Decay, except otherwise noted. [‡] From ¹⁴C(¹⁴C,p γ). [#] From ¹⁴C(¹⁴C,p γ). [@] From angular distribution measurement ((¹⁴C,p γ)-2002Co11).

27 ntinued)

 $^{27}_{11}Na_{16}$