¹⁴C(¹⁴C,**p**γ) **2002Co11**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	M. Shamsuzzoha Basunia	NDS 112, 1875 (2011)	30-Nov-2010						

Others: 2002Ta10, 2001Co05.

2002Co11,2002Ta10,2001Co05 (same research group): target: ¹⁴C; Projectile: ¹⁴C, E=22 MeV; Detectors: Si Δ E-E particle telescope, 3 Compton-suppressed Clover and 7 HPGe Compton-suppressed detectors; Measured: E γ , I γ , particle- γ and P- $\gamma\gamma$ coin; deduced level scheme.

² Na Levels	27	Na	Leve	els
------------------------	----	----	------	-----

E(level) [†]	$J^{\pi \ddagger}$	Comments
0@	5/2+	J^{π} : From Adopted Levels.
62.1 8	3/2+	J^{π} : Presumably, this state is analogous to the 90 keV $3/2^+$ state in ²⁵ Na.
1725.1 13	$(1/2^{-})$	
1815.2 10	$(1/2^+)$	
2191.2 10	$(7/2^+)$	
2224.2 [@] 9	$(9/2^+)$	
2729.1 [#] 10	$(5/2^+)$	
3017.2 [#] 10	$(3/2^+)$	
3638.3 10		
3657.2 13	$(9/2^+)$	
3837.3 15	$(5/2^+)$	
4235.4 9	$(7/2^+)$	
4525.4 10		
4716.4 9	$(3/2^+)$	
5190.3 [@] 13	$(13/2^+)$	
5408.5 10	$(11/2^+)$	
5704.5 8	$(11/2^+)$	
5762.7 10		
5947.6 <i>13</i>	$(9/2^+)$	
6158.6 8	$(9/2^{+})$	
6518.4 [#] 15	$(5/2^+)$	
6741.6 <i>13</i>	$(7/2^+, 9/2, 11/2^+)$	
9186.7 [@] 17	$(17/2^+)$	

[†] From a least-square fit to γ -ray energies, assuming $\Delta E=1$ keV for all γ -rays.

[‡] Proposed in 2002Co11, based on systematics and comparison of the experimental level energies with values calculated using shell model, except otherwise noted.

[#] Depopulating γ -ray from this level has been shown to feed the g.s. in the decay scheme. If the γ -ray feed the 62 keV state, then the energy of the state would be 62 keV higher (2002Co11).

 $\gamma(^{27}\text{Na})$

[@] Band(A): g.s. band.

E _i (level)	\mathbf{J}_i^{π}	Eγ	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	E _i (level)	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^π
62.1	$3/2^{+}$	62	0	$5/2^{+}$	M1+E2	3017.2	$(3/2^+)$	3017	0	$5/2^{+}$
1725.1	$(1/2^{-})$	1663	62.1	$3/2^{+}$		3638.3		3638	0	$5/2^+$
1815.2	$(1/2^+)$	1753	62.1	$3/2^{+}$		3657.2	$(9/2^+)$	1433	2224.2	$(9/2^+)$
2191.2	$(7/2^+)$	2129	62.1	$3/2^{+}$	E2	3837.3	$(5/2^+)$	1646	2191.2	$(7/2^+)$
2224.2	$(9/2^+)$	2224	0 :	$5/2^{+}$	E2	4235.4	$(7/2^+)$	4235	0	$5/2^{+}$
2729.1	$(5/2^+)$	2729	0 :	5/2+		4525.4		4525	0	5/2+

Continued on next page (footnotes at end of table)

¹⁴C(¹⁴C,**p**γ) **2002Co11** (continued)

	γ ⁽²⁷ Na) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
4716.4	$(3/2^+)$	2901 4716	26 74	1815.2 0	$(1/2^+)$ $5/2^+$	6158.6	(9/2+)	454 750	50 25	5704.5 5408.5	$(11/2^+)$ $(11/2^+)$
5190.3	$(13/2^+)$	2966		2224.2	$(9/2^+)$			6158	25	0	5/2+
5408.5	$(11/2^+)$	3217		2191.2	$(7/2^+)$	6518.4	$(5/2^+)$	3789		2729.1	$(5/2^+)$
5704.5	$(11/2^+)$	1469 3480	38 62	4235.4 2224.2	$(7/2^+)$ $(9/2^+)$	6741.6	$(7/2^+, 9/2, 11/2^+)$	794 4550	44 56	5947.6 2191.2	$(9/2^+)$ $(7/2^+)$
5762.7 5947.6	(9/2+)	5762 539		0 5408.5	5/2 ⁺ (11/2 ⁺)	9186.7	$(17/2^+)$	3996		5190.3	$(13/2^+)$

 † Based on $\gamma\text{-ray}$ angular distribution measurement (2002Co11).

¹⁴C(¹⁴C,**p**γ) 2002Co11

Level Scheme

Intensities: % photon branching from each level

