9 Be(28 Mg, 27 Mg γ), 9 Be(50 Ti, $X\gamma$) **2005ScZV,2001Ge05**

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	M. Shamsuzzoha Basunia	NDS 112, 1875 (2011)	30-Nov-2010						

2005ScZV: ${}^9\text{Be}({}^{28}\text{Mg}, {}^{27}\text{Mg}\gamma)$: One neutron transfer of ${}^{28}\text{Mg}$, E=57 MeV, on ${}^9\text{Be}$ target at ISOLDE facility with MINIBALL γ -ray spectrometer; ${}^{27}\text{Mg}$ identified in coincidence with two α particle decay of ${}^8\text{Be}$; Measured γ -rays and deduced one neutron transfer cross section and presented ${}^{27}\text{Mg}$ level scheme.

2001Ge05: ${}^9\text{Be}({}^{50}\text{Ti},X\gamma)$: ${}^{50}\text{Ti}$ beam, E= 300 MeV/u, was fragmented and separated using a magnetic fragment separator at GSI. Fragments were identified by energy loss and time of flight before arriving at the secondary target of Pb; Measured γ -rays and deduced ${}^{27}\text{Mg}$ level scheme.

²⁷Mg Levels

E(level)	J ^π †			
0	1/2+			
985	3/2+			
1698	5/2+			
1940	5/2+			
3475	1/2+			
3560	3/2-			
4827	$1/2^-,3/2^-$			

[†] From Adopted Levels.

γ (²⁷Mg)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}
985	3/2+	985		0 1/2+	3475	1/2+	3475 [‡]	100	0 1/2+
1698	5/2+	713 ^{‡@}	<1	985 3/2 ⁺	3560	3/2-	1862 ^{‡@}	2.0	1698 5/2 ⁺
		1698	100	0 1/2+			2575 [‡]	6.5	985 3/2+
1940	5/2+	955	100	985 3/2 ⁺			3560 [‡]	100	0 1/2+
		1940	50	0 1/2+	4827	$1/2^-, 3/2^-$	1267 ^{‡@}	9.8	3560 3/2-
3475	$1/2^{+}$	1777 ^{‡@}	<1	1698 5/2 ⁺			1352 [‡]	13.7	3475 1/2 ⁺
		2490 ^{‡@}	2	985 3/2+			3842 [‡]	100	985 3/2+

[†] Reported both in 2005ScZV and 2001Ge05, except otherwise noted. γ -ray energy deduced by the evaluator from level energy difference.

From 2005ScZV, deduced from level energy difference by the evaluator.

[#] Branching from 2005ScZV.

[®] Placement of transition in the level scheme is uncertain.

${}^{9}\text{Be}({}^{28}\text{Mg}, {}^{27}\text{Mg}\gamma), {}^{9}\text{Be}({}^{50}\text{Ti}, X\gamma)$ 2005ScZV,2001Ge05

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

