Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 156, 148 (2019) 31-Jan-2019

 $Q(\beta^-)=-6320 \ SY; \ S(n)=7890 \ SY; \ S(p)=3230 \ SY; \ Q(\alpha)=9623 \ 16$ 2017Wa10 Estimated uncertainties (2017Wa10): $\Delta Q(\beta^-)=370, \ \Delta S(n)=300, \ \Delta S(p)=390.$

 $S(2n)=14450\ 290,\ S(2p)=5370\ 380\ (syst,2017Wa10).$

2010Ni14: 238 U(34 S,4n), E(c.m.)=152.0 MeV 34 S beam produced by the linear accelerator UNILAC and the velocity filter SHIP at GSI in Darmstadt, beam intensity from 2.0 to 2.5 p μ A. 238 U target prepared by sputtering of depleted 238 U metal on a 43 μ g/cm² carbon backing. The α -decay events and fission fragments were detected by a position sensitive 16-strip Si PIPS detector (stop detector) with an active area of 80×35 mm. A clover Ge detector was used to measure γ rays or x rays in coincidence with α particles and/or SF events. Measured σ , E α , T_{1/2}. FWHM for α particles=40 keV. One event was assigned by 2010Ni14 to the decay of 268 Hs nuclide.

2010Gr04: ²³⁸U(³⁶S,6n),E=256.4 MeV from UNILAC at GSI. Measured reaction products using COMPACT system of efficient and rapid chemical-separation and online detection based on the cry-thermo- chromatography method. Based on expected production cross section for 6n-channel and Eα, assignment to ²⁶⁸Hs in 2009Dv01 was excluded with certainty.

2009Dv01: 248 Cm(25 Mg,5n), E=140 MeV, provided by UNILAC at GSI. The α particles and fission fragments were detected using the Cryo Online Multidetector for Physics and Chemistry of Transactinides (COMPACT). Measured α and fission spectra. Deduced reaction cross sections. Transport time was ≈ 1 s. No decay chains were ascribed to the decay of 268 Hs. Upper limit of cross section of 268 Hs production was deduced from one event as $\sigma < 1.3$ pb. Either 268 Hs does not decay by α mode or its half-life is < 0.5 s.

For theoretical studies, consult Nuclear Science References (NSR) database at NNDC, BNL for 73 primary references dealing with the half-lives and other aspects of nuclear structure in this mass region.

²⁶⁸Hs Levels

E(level) J^{π} $T_{1/2}$ 0.4 s + 18-2 0.