Adopted Levels

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 156, 70 (2019)	31-Jan-2019			

 $Q(\beta^{-}) = -4490 SY; S(n) = 7250 SY; S(p) = 4150 SY; Q(\alpha) = 8800 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): $\Delta Q(\beta^{-})=290$, $\Delta S(n)=270$, $\Delta S(p)=330$, $\Delta Q(\alpha)=100$.

S(2n)=13310 370, S(2p)=7040 440 (syst, 2017Wa10).

2006Dv01, 2008Dv02: ²⁶⁶Sg produced as α -daughter of ²⁷⁰Hs, which was formed in ²⁴⁸Cm(²⁶Mg,4n),E=193,185 MeV reaction at GSI, and assignment to the isotope made through the observation of four correlated (α -SF) decay chains in 2006Dv01, and two in 2008Dv02 which were attributed to ²⁷⁰Hs on the basis of α -SF correlations. These studies negated the discovery of ²⁶⁶Sg, published in several articles (2003Tu05, 2003Du27, 2002Du21, 2001Hu22, 1998Tu01, 1997Sc48, 1997Sc49 from the GSI group; and 1995Og02, 1994La22, 1994Lo27, 1994La22, 1994Og04 from the Dubna-LLNL group), and assigned the events in these earlier studies to ²⁶⁹Hs decaying by α decay to ²⁶⁵Sg, which also decays partially by α . See ²⁷⁰Hs Adopted Levels for history of six correlated decay chains observed in the above two works.

2013Og03: ²⁶⁶Sg produced as α -daughter of ²⁷⁰Hs isotope, which was formed in ²²⁶Ra(⁴⁸Ca,4n) reaction E(⁴⁸Ca)=229, 234, 241 MeV at Dubna. This study confirmed conclusions of the GSI experiments by 2006Dv01 and 2008Dv02. See ²⁷⁰Hs Adopted Levels for history of six correlated decay chains observed by 2013Og03.

Earlier studies where either direct production of ²⁶⁶Sg or through the α decay of ²⁷⁰Hs was claimed in the first experiments at Dubna, and later at GSI, but later these activities were reassigned to ²⁶⁵Sg or ²⁶⁹Hs by 2006Dv01 and 2008Dv02 at GSI, and confirmed in 2013Og03 at Dubna. The following studies are listed here only from the historical perspective of search for ²⁶⁶Sg during 1994-2004 at Dubna and GSI.

- 1994La22 (also 1994Lo27, 1994Og04, 1995Og02): ²⁴⁸Cm(²²Ne,4n), E=116,121 MeV at Dubna. Six α -SF correlated events were reported. The α -decay half-life of ²⁶⁶Sg was suggested as 10-30 s, with α decay as the primary mode ($\%\alpha \ge 50$), E α =8.63 MeV 5.
- 1997Sc48, 1997Sc49, 1998Tu01: ²⁴⁸Cm(²²Ne,4n),E=121 MeV at GSI using UNILAC accelerator and On-Line Gas chemistry Apparatus (OLGA). Four α -SF decay chains were assigned to the decay of ²⁶⁶Sg. The α -decay half-life of ²⁶⁶Sg was reported as 21 s +20–12, with E α =8.77 MeV 4, and the decay of ²⁶⁶Sg through α and SF modes.

2001Hu22: chemistry-related experiments at GSI using the same reaction as in 1998Tu01. Two decay chains reported with α -decay half-life of 21.1 s and E α =8.66 and 8.70 MeV.

2002Du21, 2003Du27, 2003Tu05 (also 2003Kr24 review): two α - α -SF correlated decay chains (²⁷⁰Hs \rightarrow ²⁶⁶Sg \rightarrow ²⁶²Rf) were reported using the ²⁴⁸Cm(²⁶Mg,4n),E=143.7-146.8 MeV reaction and chemistry techniques at GSI.

- 2004Vo24: this experiment reports mainly the chemistry of Z=108 (Hs) element through the formation of 269 Hs or 270 Hs in 248 Cm(26 Mg,4n) at GSI. Three α - α -SF correlated events were assigned to the decay of 269 Hs or 270 Hs.
- For theoretical studies, consult Nuclear Science References (NSR) database at NNDC, BNL for 105 primary references dealing with the half-lives and other aspects of nuclear structure in this mass region.

²⁶⁶Sg Levels

Cross Reference (XREF) Flags

A 270 Hs α decay (7.6 s)

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

²⁶⁶Sg Levels (continued)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
$\frac{\Gamma(rever)}{0}$	$\frac{1}{0^{+}}$	0.34 s +19-9	A	%SF=100 Only the SF decay mode observed by 2013Og03 (Dubna group), 2008Dv02 and 2006Dv01 (GSI group). See comment for $T_{1/2}$. $T_{1/2}$: weighted average of 0.28 s +19-8 (2013Og03) and 0.36 s +25-10 (2008Dv02) for SF decay of ²⁶⁶ Sg. In several earlier publications (2003Tu05, 2003Du27, 2002Du21,
				2001Hu22, 1998Tu01, 1997Sc48, 1997Sc49 from the GSI group; and 1995Og02, 1994La22, 1994Lo27, 1994La22, 1994Og04 from the Dubna-LLNL group), α decay

mode was also reported, and the half-life for α decay was reported as ≈ 21 s, but 2006Dv01 reassigned the events observed in all the earlier studies listed above to 265 Sg.