266 Hs α decay

Type Author History Citation Literature Cutoff Date

Full Evaluation Y. Akovali NDS 94, 131 (2001) 1-Aug-2001

Parent: 266 Hs: E=0.0; J^{π} =0+; $T_{1/2}$ =2.3 ms +13-6; $Q(\alpha)$ =10335 20; % α decay≤100.0

2001Ho06 pointed out that 266 Hs α decay might possibly have two components with $T_{1/2}$ =0.35 ms +28-11 and $T_{1/2}$ =6.3 ms +86-23. If indeed there are two separate states, the 6.3-ms is more likely to Be the ground state. See 266 Hs Adopted Levels for additional comment.

The α decay branching of ²⁶⁶Hs has not been experimentally determined. If %SF=1.4, As estimated by 2001Ho06, then % α =98.6.

²⁶²Sg Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $E\alpha$ E(level) $E\alpha$: measured by 2001Ho06.

Eα: measured by 2001Ho06. HF=1.0 yields $r_0(^{262}\text{Sg})$ =1.48 3, if %α=100, Iα=80 20 per 100 α decays and $T_{1/2}$ =2.3 ms +13-6 are used. For $T_{1/2}$ =6.3 ms and for $T_{1/2}$ =0.35 ms, r_0 =1.44 and r_0 =1.56, respectively.

Comments