Adopted Levels

	TypeAuthorHistory CitationLiterature Cutoff DateFull EvaluationY. AkovaliNDS 94, 131 (2001)1-Aug-2001
$Q(\beta^{-})=-2.11\times10^{3} SY; S(n)=6.06\times10^{3} SY; S(p)=2.35\times10^{3} SY; Q(\alpha)=9.05\times10^{3} SY$ 2012Wa38 Note: Current evaluation has used the following Q record. $Q(\beta^{-})=-2165 SY; S(n)=6165 SY; S(p)=2258 SY; Q(\alpha)=9005 SY$ 1995Au04	
Assignment: 249 Bk(92-97 MeV 18 O,5n), Parent Of 4.3-S 258 Lr (α 'S) 1971Gh01 249 Bk(117-MeV 18 O,5n), Chemistry 1988Gr30 249 Bk(99-MeV 18 O,5n), Chemistry 1992Go28,1993Zi06 248 Cm(19 F,5n), Parent Of 4.3-S 258 Lr (α 'S) 1999Dr09 262 Db Levels	
$\frac{\text{E(level)}}{0.0} \frac{\text{T}_{1/2}}{35 \text{ s}^{-2}}$	
	 %SF(+%ε+%β⁺)≈33 T_{1/2}: from measured half-lives: 40 s 10 (1971Gh01), 32.6 s 65 (1977Be43; from SF decay), 34.1 s 46 (1977Be43; from α decay), 35.2 s +104-72 (1979Dr07; from SF decay), 33.5 s 94 (1989Kr17; from SF decay), 35.3 s 123 (1989Kr17; from correlated α's), 27 s +20-11 (1999Dr09; from α's). the α branching of≈67% is adopted from the data of 1992Kr01. The SF branching of≈33% deduced by 1992Kr01, May include (ε+β⁺) branching. An upper limit of≈5% for ε+β⁺ branch was obtained by 1977BeZM (see also 1977BeWH) from the absence of L x ray(Z=104) or K x ray(Z=104) preceding fission, by assuming T_{1/2}(²⁶²Rf)≤150 μs. The adopted half-life of ²⁶²Rf is 2.3 s 4. α and SF branchings were obtained In various experiments from α and fission counts: %SF or %ε≈60 (1971Gh01), %SF=78 6 (1977Be43), %SF≈60 (1979Dr07), %SF=49 18 (1988Gr30), %SF=51 11 (1989Kr17), %SF≈33 (1992Kr01). 1971Gh01 addressed the possibility of including SF counts also from decay of ²⁶²Rf, probable β⁺ decay daughter of ²⁶²Db, and counts from ²⁶³Db and ²⁶³Rf. Because of insufficient data, none of these possibilities was ruled out. The authors of 1992Kr01 examined the ²⁶³Db production In their ²⁴⁹Bk(¹⁸O,xn) reaction At E(¹⁸O)=93 and 99 MeV. The ²⁶³Db nucleus decays by spontaneous fission, and its half-life is 27 s (1992Kr01). Different ratio of ²⁶²Db/²⁶³Db nuclei produced In various experiments could explain the inconsistent branchings deduced. 1997Mo25 calculated the partial half-life for SF decay was calculated by 1985Lo17 As T_{1/2}(β⁺)=68.99 s for ²⁶²Db g.s. the partial half-life for SF decay was calculated by 1985Lo17 As T_{1/2}(SF)≈32 s, and calculated by 1989Mo03, using two different methods, As 1.9 d and 71 d. See 1985Cw01 for calculation of fission barriers.
0.0+x	level is populated In ²⁶⁶ Bh α decay. Q(α)(²⁶⁶ Bh)=9550 300, obtained by 1995Au04 from Q(α) systematics, suggests E(level)=118 +320-118.