$^{264}\mathrm{Hs}\,\alpha$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Y. A. Akovali	NDS 87, 301 (1999)	1-Oct-1998

Parent: ²⁶⁴Hs: E=0.0; $J^{\pi}=0^+$; $T_{1/2}\approx 0.8$ ms; Q(α)=10591 20; % α decay \approx 50.0

 $T_{1/2}(^{264}\text{Hs})\approx 0.8 \text{ ms}$ from the latest measurement by α detection is adopted here because of the possibility of observation of a SF-decaying isomer. See '²⁶⁴Hs Adopted Levels' for measured $T_{1/2}$'s by fission detection and for an earlier measurement by α detection.

1998HoZV deduced α and SF branchings as 50%; however, existence of a spontaneously fissioning isomeric state could not be ruled out (1998HoZV).

See '²⁶⁴Hs Adopted Levels' for calculated partial half-lives for α , β and SF decays.

 $Q(\alpha)(^{264}Hs)=10591\ 20$ is calculated from $E\alpha=10434\ 20$ for the α transition to the ^{260}Sg ground state.

²⁶⁰Sg Levels

 $\frac{\mathrm{E(level)}}{0.0} \quad \frac{\mathrm{J}^{\pi}}{\mathrm{0}^{+}}$

 α radiations

Eα	E(level)	Comments		
10434 20	0.0	E α : measurement of 1998HoZV. Only the escape peak was detected by 1986Mu10; the full energy α peak		
		could not be measured (α escaped their detector).		