Adopted Levels

Type Author Citation Literature Cutoff Date

Full Evaluation Y. A. Akovali NDS 87,301 (1999) 1-Oct-1998

 $Q(\beta^-)=-4.52\times10^3$ syst; $S(n)=7.29\times10^3$ syst; $S(p)=3.99\times10^3$ syst; $Q(\alpha)=8.90\times10^3$ syst 2012Wa38 Note: Current evaluation has used the following Q record -4651 syst 7321 syst 4082 syst 8900 syst 1995Au04. Fission-fragment mass and kinetic energy distributions were measured by 1989Hu09.

For a review of systematics of spontaneous fission half-lives, mass and kinetic energy distributions, see 1995Ho27.

Assignment: 249 Bk(80-MeV 15 N,4n), 248 Cm(92-MeV 16 O,4n), 249 Cf(96-MeV 18 O, α 3n) (1985So03). 249 Bk(15 N,4n) 249 Cf(15 N)=75-93 MeV, excit (1977Dr10). 260 Rf Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{T}_{1/2}}{21 \text{ ms } I}$

Comments

%SF≤100

 $T_{1/2}$: measurement of 1985So03. Other measurements: 76 ms 8 (1977Dr10), 23 ms 2 (1981Ni01), 28 ms +6-5 (1985TeZX). Earlier measurements: 0.3 s I (1964Fl04), 0.10 s 5 (1970Og05), 80 ms 20 (1976Dr06).

No 80-ms SF activity was observed by 1981Ni08 in 249 Bk(15 N,xn) reaction; no SF activities with half-lives of 80 ms and 60-100 ms in 249 Bk(15 N,4n), 248 Cm(16 O,4n) and 249 Cf(18 O, α 3n) reactions were observed by 1985So03.

For theoretical calculations of SF half-lives, see, for example, 1976Ra02, 1985Lo17, 1987Mo16, 1989St20, 1992Bh03.

Only SF decay has been observed. α decay to 256 No has not been observed (E α =8760 200 is expected from Q(α)=8900 200 listed in 1995Au04).

Branching for α decay can be estimated by various methods. The r_0 systematics presented in 1998Ak04 suggests that 260 Rf α decay should yield $r_0(^{256}$ No)=1.478 20. By requiring the hindrance factor for a 8760-keV α to be 1.0, $T_{1/2}(8760\alpha)$ =1.5 s +10-5 is calculated. This α half-life is consistent with the $T_{1/2}(\alpha)$ systematics for g.s. to g.s. α 's (see, for example 1967Le24). If intensity of the unobserved 8.76-MeV α is 80 ± 20 of the total α decays, then the r_0 systematics yields $\%\alpha$ =1.6 +9-6.

From semiempirical formulas, 1997Mo25, 1997Po18 and 1976Ra02 calculated $T_{1/2}1(\alpha)$ =0.89 s, 0.8 s and 0.14 s which yield $\%\alpha$ =2.26, 2.5 and 15, respectively.

An upper limit of $\%\varepsilon$ <2.5 was placed by 1977Be36 from nonobservation of delayed coincidences of SF events with Rf x-rays. Intensity of an ε branch to 260 Lr ground- or a low-lying state may be estimated as <0.001% by requiring log ft for this branch to be >5.0.

The authors of 1997Mo25 calculated the β decay half-life of 260 Rf as >100 s, corresponding to $\% \varepsilon < 0.02$.

%SF=98 2, $\%\alpha$ =2 are recommended by the evaluator, for the reasons given above, although these have not been determined experimentally.