Coulomb excitation 2015Si01

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016				

2015Si01: Beam=2.82 MeV/nucleon ²⁶Na produced in bombardment of UC_x target by 1.4 GeV protons provided by the CERN PS Booster and ²⁶Na ions separated by ISOLDE General Purpose separator.

Coulomb excitation target=enriched ¹⁰⁴Pd.

A radioactive-beam Coulomb-excitation experiment with 26 Na (T_{1/2}=1.07 s) performed using the REX-ISOLDE facility at CERN.

²⁶Na ions (q=6⁺) were post accelerated to 2.82 MeV/nucleon and impinged upon a 3.6-mg/cm² thick ¹⁰⁴Pd target with an average beam intensity of $6.4 \times 10^4 5$ ions/s for an irradiation period of 73 h. Scattered beam and target nuclei were detected using the 500- μ m double-sided silicon strip detector. Deexcitation γ rays following Coulomb excitation of projectile and target nuclei were detected using the MINIBALL γ -ray spectrometer comprising eight triple-cluster detectors, each consisting of three six-fold-segmented HPGe crystals. Measured E γ , I γ , (scattered particle) γ -coin. The coupled-channels Coulomb-excitation code GOSIA2 was used to obtain transition matrix elements from observed γ -ray yields and known spectroscopic data (branching ratios, multipole mixing ratios and half lives). Deduced B(E2) and B(M1) values are compared to *sd* shell-model calculations using various interactions: universal *sd* (USD), universal *sd*-A (USDA), and universal *sd*-B (USDB) interaction.

²⁶Na Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0	3+‡		
82.4 6	1+‡		
233.2 8	2+ #	0.7 ns +6-5	B(E2) \uparrow =0.00421 +46-41 B(E2) from 3 ⁺ g.s. to 233 level deduced by evaluators from experimental B(E2)(W.u.)=12.9 +14-13, branching ratio and mixing ratio for 233 γ .
407.0 20	2 ^{+#}	0.18 ns +17-13	$B(E2)\uparrow=0.001039~96$ B(E2) from 3 ⁺ g.s. to 407 level deduced by evaluators from experimental B(E2)(W.u.)=3.18 29, branching ratio and mixing ratio for 407 γ . $T_{1/2}$: deduced by evaluators from B(E2)(W.u.) and adopted 407 γ properties.

[†] From least-squares fit to $E\gamma$ data, assuming 0.5 keV uncertainty for 82.5-keV transition.

[‡] From Adopted Levels.

[#] Deduced from best fit to (t,³He) angular distributions in 1987Pe06, although these assignments were not adopted in Endt's 1990En08 evaluation. 2006Le17 in their ${}^{14}C({}^{14}C,d\gamma)$ claim to confirm 2⁺ assignment for both the 233- and 407-keV levels.

 $\gamma(^{26}Na)$

						/()	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
82.4	1 ⁺	84 <i>3</i>	81.0.32	0 3 ⁺ 82.4 1 ⁺	[E2] M1+F2	+0.16.7	0.137 4	B(E2)(W.u.)=3.10 E_{γ} : From Adopted Gammas. B(E2)(W.u.) deduced by 2015Si01 from known half-life of 82.4 level and theoretical conversion coefficient for 82.5 γ from BrIcc code. Shell-model predictions (2015Si01) for corresponding B(E2)(W.u.) values are 8.66 (USD), 8.39 (USDA) and 6.88 (USDB). B(M1)(W.u.)=0.44 +73-22: B(E2)(W.u.)=26
233.2	2	151 1	01.0 52	02.1	1011 + 122	10.10 /		Shell-model predictions for corresponding B(M1)(W.u.) in 2015Si01: 0.0002 (USD), 0.011 (USDA) and 0.023 (USDB).

Continued on next page (footnotes at end of table)

Coulomb excitation 2015Si01 (continued)

γ ⁽²⁶Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	Comments
								Shell-model predictions for corresponding B(E2)(W.u.) in 2015Si01: 3.09 (USD); 1.23 (USDA); 1.84 (USDB). I_{γ} : corrected number of counts reported as 3279 <i>131</i> in 2015Si01.
233.2	2+	233 1	100 4	0	3+	M1+E2	-0.32 14	B(M1)(W.u.)= $0.13 + 28 - 7$; B(E2)(W.u.)= $12.9 + 14 - 13$ Shell-model predictions for corresponding B(M1)(W.u.) in 2015Si01: 0.14 (USD), 0.04 (USDA) and 0.07 (USDB). Shell-model predictions for corresponding B(E2)(W.u.) in 2015Si01: 6.25 (USD) 10.06 (USDA) and 10.04 (USDB)
								I_{γ} : corrected number of counts reported as 4046 <i>162</i> in 2015Si01.
407.0	2+	(324) 407 2	18 100 <i>10</i>	82.4 0	1+ 3+	M1+E2	-0.25 12	E_{γ} , I_{γ} : from ¹⁴ C(¹⁴ C,d γ) (2006Le17). B(M1)(W.u.)=0.15 +42-8; B(E2)(W.u.)=3.18 29 Shell-model predictions for corresponding B(M1)(W.u.) in 2015Si01: 0.34 (USD), 0.34 (USDA) and 0.32 (USDB). Shell-model predictions for corresponding B(E2)(W.u.) in 2015Si01: 11.27 (USD), 7.91 (USDA) and 7.89 (USDB). I_{γ} : corrected number of counts reported as 1374 <i>137</i> in 2015Si01.

[†] From Adopted Gammas.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Legend

Coulomb excitation 2015Si01

Level Scheme

