$^{14}C(^{14}C, d\gamma)$ **2006Le17**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016				

2006Le17: E=22 MeV. Measured E γ , I γ , d γ coin, $\gamma\gamma\gamma$ coin, $\gamma(\theta)$, using an array of three (four crystal) Compton-suppressed 'clover' detectors and seven Compton-suppressed single Ge crystals. The three 'clovers' and one single Ge detectors were placed at 90°, two single crystals at 35° and four at 145° relative to the beam direction. Charged particles were detected with Si detector (E- Δ E) telescope at 0°. Comparisons with shell-model calculations. Detailed discussion of a missing 1⁺ state below 3 MeV, and possible candidates.

²⁶Na Levels

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}
0	3+	1660.4 12	2284.1 10	5+	3222.9 10	(2^{+})
82.3 6	1^{+}	1996.9 7	2452.9 8		3305.0 12	
233.6 6	2^{+}	2045.4 7	2712.5 12		3417.5 12	
407.0 6	2^{+}	2126.1 10	2726.4 10	1^{+}	3603.6 12	
1408.0 10		2182.5 8	2804.0 8		4193.1 <i>13</i>	
1514.0 8	1^{+}	2230.9 8	2937.8 8			

[†] From least-squares fit to $E\gamma$ data, assuming $\Delta(E\gamma)=1$ keV for each γ ray.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	δ	Comments
82.5		82.3	1^{+}	$0 3^+$			
150.9	82	233.6	2^{+}	82.3 1+	M1+E2	+0.16 7	
233.3	100	233.6	2+	0 3+	M1+E2	-0.32 14	
324.1	16	407.0	2^{+}	82.3 1+	M1+E2	+0.14 9	
350	13	2804.0		2452.9			E_{γ} : 351 in Figure 4 of 2006Le17.
406.5	87	407.0	2+	0 3+	M1+E2	-0.25 12	, _
1041	19	3222.9	(2^{+})	2182.5			
1107	6.5	1514.0	1^{+}	407.0 2+			
1177	8.1	3222.9	(2^{+})	2045.4			
1212	25	2726.4	1^{+}	1514.0 1+			
1280	45	1514.0	1^{+}	$233.6\ 2^+$	M1(+E2)	+0.07 10	
1308	3.2	3305.0		1996.9			
1408	33	1408.0		0 3+			
1578	15	1660.4		82.3 1+			
1590	17	1996.9		$407.0\ 2^+$			
1639	7.2	2045.4		407.0 2+			
1764	31	1996.9		233.6 2+			
1775	14	2182.5		$407.0\ 2^+$			
1996	31	1996.9		0 3+			E_{γ} : 1997 in Figure 4 of 2006Le17.
1996	31 [†]	2230.9		233.6 2+			
2044	7.2	2045.4		0 3+			E_{γ} : 2045 in Figure 4 of 2006Le17.
2044	7.2	2452.9		407.0 2+			
2101	2.6	2182.5		82.3 1+			
2126	147	2126.1		0 3+			
2232	44	2230.9		0 3+			
2284	14	2284.1	5+	0 3+			
2371	19	2452.9		82.3 1+			
2493	23	2726.4	1^{+}	233.6 2+			
2630	19	2712.5		82.3 1+			

 γ ⁽²⁶Na)

Continued on next page (footnotes at end of table)

$^{14}C(^{14}C, d\gamma)$ **2006Le17** (continued)

 γ ⁽²⁶Na) (continued)

Eγ	I_{γ}	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
2679	24	4193.1	_	1514.0	1+
2805	54	2804.0		0	3+
2855	9.9	2937.8		82.3	1^{+}
2938	13	2937.8		0	3+
3335	20	3417.5		82.3	1^{+}
3521	41	3603.6		82.3	1^{+}

 † Multiply placed with undivided intensity.

Legend

$^{14}C(^{14}C,d\gamma)$ 2006Le17

 $^{26}_{11}Na_{15}$

3