	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016

 $Q(\beta^{-})=18190 \ 80; \ S(n)=7.7\times10^{2} \ 11; \ S(p)=15.97\times10^{3} \ 14; \ Q(\alpha)=-15.80\times10^{3} \ 21$ 2012Wa38

Time-of-Flight spectrometer at the LAMPF accelerator (1995ReZZ). Particle stability established in beryllium + 48 Ca reactions (1979We10) and thorium + p reactions (1988Wo09).

- Production cross section ~0.05 μ b, measured in ⁴⁰Ar fragmentation reaction of ⁹Be(⁴⁰Ar,X), E=90A MeV 2007No13. In 2006Kh08, cross section=2221 mb 52 at magnetic rigidity ($\beta \rho$)=2.753 Tm, E=42.03 MeV/u and cross section=2424 mb 71 at $\beta\rho$ =2.575 Tm, E=36.69 MeV/u for Si(²⁸Ne,X) and related reduced strong absorption radius <r₀²>=1.225 fm² 22 are measured. The later one is used to study the isospin dependence of the reduced strong absorption radius. Measured ²⁶F production cross sections: $\sigma_{\rm F}$ =0.048 µb 15 from ⁴⁰Ar fragmentation, E=1.06 GeV/u, on Be target (2000Oz01); 2003Oz01 reported fragmentation cross section from ⁴⁰Ar, E=94 MeV/u, $\sigma_{\rm F}$ =0.001 μb 4 on Be target and $\sigma_{\rm F}$ =0.26 μb 8 on Ta target.
- 2001Oz03: Due to poor statistics, unable to determine the halo structure of ²⁶F from the measured interaction cross section of ²⁶F with C target.

2010Ro23: Measured one-neutron-removal cross section σ_{1n} =110 mb 24.

²⁶F Levels

Cross Reference (XREF) Flags

- ²⁶F IT decay (2.2 ms) A
- В
- ${}^{1}\text{H}({}^{27}\text{F},{}^{26}\text{F}\gamma)$ ${}^{9}\text{Be}({}^{26}\text{Ne},\text{N25F})$ ${}^{12}\text{C}({}^{27}\text{Na},{}^{26}\text{F}\gamma)$ С
- D

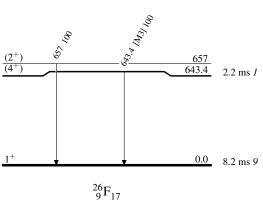
E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	1+	8.2 ms 9	AB D	$\%\beta^-=100; \ \%\beta^-n=13.5 \ 40$ J ^{π} : Log $ft=4.9$ to 0 ⁺ , Log $ft=4.6$ to 2 ⁺ . J ^{π} =1 ⁺ is consistent with the Gallagher-Moszkowski spin-coupling rule for configuration $\pi d_{5/2} \otimes v d_{3/2}$. T _{1/2} : Weighted average of 7.8 ms 6 (2013Le03 – Figure 2), and 10.2 ms 14 (1999Re16). Half-lives were measured from γ (t) measurements. Others: 9.6 ms 8 (1999Dl01,2001Pe14
				- value from the same research group of 1999Re16), 7.7 ms 2 - 1672.5 γ (t) and 7.8 ms 5 - 1797.1 γ (t) growth (due to IT decay) curve fitting (2013Le03). % β -n: Average value of 16 4 (2013Le03) and 11 4 (1999Re16,2001Pe14). Uncertainty - from input value.
643.4 <i>I</i>	(4+)	2.2 ms 1	A	 %IT=82 <i>Î</i>1; %β⁻=18 <i>I</i>1; %β⁻n=12 8 E(level): 2013Le03 state that the 643.4-keV, 4⁺ isomer may correspond to the 657 keV 7, 2⁺ level. Further, 2013Le03 state that the energy of the isomer is ≈650 <i>10</i> keV. See spin-parity comments. J^π: From shell model calculations in 2013Le03, assuming 643.4γ as a M3 transition to 1⁺. If this excited level is considered to be the same as 657 keV 7, the hypothesis of isomerism of 4⁺ state would be due to the emission of a very low energy 4⁺ to 2⁺ transition (up to 10 keV (to ensure having a long-lived isomer), then followed by 2⁺ to 1⁺ transition – noted in 2013Le03. T_{1/2}: From 643.4γ(t) (2013Le03). %IT: From 2013Le03. May be considered an estimated value, since three decay modes of this isomeric state, i.e. IT, β⁻, and β⁻n, coupled with same decay product through β⁻n

Adopted Levels, Gammas (continued)

²⁶F Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
			decay branch of ²⁶ F ground state make the measurements a challenge. Reported isomeric ratio R=42 8% in 2013Le03 may also be considered as an estimated value for aforementioned reasons. $\%\beta^-$: From 100 – %IT.
			$\%\beta^-$ n: 65 18% of $\%\beta^-$ =18 11 β - branch of 4 ⁺ isomeric state (e-mail communication with A. Lepailleur ((1st author of 2013Le03): dated Sept 10, 2015). Note that 2013Le03 do not seem to provide explanation or methodology for the extraction of $\%\beta^-$ n decay mode with a relative value of 65% 18.
657 7	(2 ⁺)	ΒD	J^{π} : Shell model calculations predict 2 ⁺ state as the 2nd excited excited state in ²⁶ F (2004El10 – ¹ H(²⁷ F, ²⁶ F γ)).
1.05×10 ³ 12		С	 E(level): Deduced by evaluators from E(res)=271 keV 37*(Mass(²⁵F)+ Mass(n))/Mass(²⁵F) + Sn(²⁶F)=770 keV 110 (2012Wa38). 2011Fr13 deduced 1072 keV 120, using separation energy obtained from excess mass: 18680 keV 80 (2007Ju03). In the decay spectrum, a broad peak was fitted considering a single resonance. Shell model calculations predict several unbound states.

 † From shell model calculations, except otherwise noted.


$\gamma(^{26}F)$

E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$E_f J_f^{\pi}$	Mult.	Comments
643.4	(4 ⁺)	643.4 1	100	0.0 1+	[M3]	E_{γ} : Delayed transition. Not observed in coincidence with β transitions from ground state.
657	(2 ⁺)	657 7	100	0.0 1+		E_{γ} : From 2012St01 (²⁷ Na, ²⁶ F γ). Other: 665 <i>12</i> (2004E110 - (²⁷ F, ²⁶ F γ)).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

