⁹Be(²⁶Ne,N25F) 2011Fr13

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016	

²⁶Ne secondary beam, E=80 MeV/nucleon, produced from a ⁴⁰Ar primary beam, E=140 MeV/nucleon, at the National Superconducting Cyclotron Laboratory of MSU. Target=721 mg/cm² thick beryllium target. ²⁵F fragments detected by charged-particle detectors. Neutrons were detected in coincidence by the Modular Neutron Array (MoNA). Measured decay energy spectra. Deduced resonance level.

• -

	²⁶ F Levels
E(level) [†]	Comments
1.05×10 ³ 12	E(level): Deduced by evaluators from E(res)=271 keV $37 \times (M(^{25}F)+M(n))/M(^{25}F) + Sn(^{26}F)=770$ keV 110 (2012Wa38). 2011Fr13 deduced 1072 keV 120, using separation energy obtained from excess mass: 18680 keV 80 (2007Ju03).
	A broad peak in the decay spectrum, fitted considering a single resonance and yield 271 keV 37 which was assumed to decay to ground state of ²⁵ F. Shell model calculations predict several unbound states.

[†] Decay energy spectra calculated from the difference of the invariant mass of ²⁶F and the sum masses of the neutron and ²⁵F. The mass excess values of ²⁵F and ²⁶F used were 11410 keV *90* and 18680 keV *80*, respectively.