²⁶F IT decay (2.2 ms) 2013Le03

	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016

Parent: ²⁶F: E=643.4 1; J^π=4⁺; T_{1/2}=2.2 ms 1; %IT decay=82 11

²⁶F-%IT decay: %IT=82 11 (2013Le03). Note that uncertainty is listed as 14% in the abstract of the paper.

²⁶F was produced from fragmentation of a primary beam of ³⁶S, E=77.6 MeV/nucleon on a Be target (thickness 237 mg/cm²), separated by LISE spectrometer at GANIL, identified from energy loss in a stack of Si detectors and time-of-flight, and implanted in a 1 mm-thick double-sided Si stripped (DSSSD) detector surrounded by four clover HPGe detectors. Measured $E\gamma$, $I\gamma$, $\beta\gamma$ and $\gamma\gamma$ coincidences, half-life of ²⁶F g.s. and isomer, $\beta\beta$ -n. Deduced levels, J, π . Comparison with Shell model calculations.

²⁶F Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0.0 643.4 <i>1</i>	1+ 4+	2.2 ms <i>1</i>	 %IT=82 11; %β⁻=18 11; %β⁻n=12 8 %IT: from 2013Le03. May be considered an estimated value, since three decay modes of this isomeric state, i.e. IT, β⁻, and β⁻n, coupled with same decay product through β⁻n decay branch of ²⁶F ground state make the measurements a challenge. Reported isomeric ratio R=42 8% in 2013Le03 may also be considered as an estimated value for aforementioned reasons. %β⁻: From 100 - %IT. %β⁻ m. 65 18% of %β⁻=18 11 β- branch of 4⁺ isomeric state (e-mail communication with A. Lepailleur ((1st author of 2013Le03): dated Sept 10, 2015). Note that 2013Le03 do not seem to provide explanation or methodology for the extraction of %β⁻n decay mode with a relative value of 65% 18. E(level): 2013Le03 state that the 643.4-keV, 4⁺ isomer may correspond to the 657 keV 7, 2⁺ level reported in 2012St01 (Phys. Rev. C85, 017303), albeit with a weak confidence. In this scenario, the 657-keV, 4⁺ isomer is ≈650 10 keV. J[*]: From shell model calculations in 2013Le03, assuming 643.4y as a M3 transition to 1⁺. If this excited level is considered to be the same as 657 keV 7 reported in 2012St01 (Phys. Rev. C85, 017303), along-lived isomer), then followed by 2⁺ to 1⁺ transition – noted in 2013Le03. T_{1/2}: From 643.4γ(t) (2013Le03). 	
			γ ⁽²⁶ F)	
$\frac{E_{\gamma}}{643.4 \ l}$	$\frac{I_{\gamma}^{\dagger\ddagger}}{34\ 2}$	$\frac{\mathrm{E}_{i}(\mathrm{level})}{643.4}$	$\frac{J_i^{\pi}}{4^+} = \frac{E_f}{0.0} = \frac{J_f^{\pi}}{1^+} = \frac{Mult.}{[M3]}$	

[†] Absolute intensity per 100 ²⁶F decay – received from A. Lepailleur (1st author of 2013Le03) through e-mail communications

(Sept 17, 2015). [‡] Absolute intensity per 100 decays.

1

²⁶F IT decay (2.2 ms) 2013Le03

 ${}^{26}_{9}\rm{F}_{17}$