1 **H**(27 **F**, 26 **F** γ) **2004E110**

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia and A. M. Hurst	NDS 134, 1 (2016)	1-Feb-2016

2004E110: ¹H(²⁷F,²⁵F γ); ²⁷F was obtained bombarding a primary beam of ⁴⁰Ar, E=94 MeV/u, on ¹⁸¹Ta target; reaction products were momentum and mass analyzed by RIPS fragment separator at RIKEN and identified by energy loss, time-of-flight and magnetic rigidity; the secondary beam of ²⁷F, E=40 MeV/nucleon, directed to a liquid hydrogen target; E γ was measured by DALI2 setup of 146 NaI(Tl) scintillator detectors.

²⁶ F	Level	s
-----------------	-------	---

E(level)	$J^{\pi \dagger}$	Comments
0.0	1+	
665	(2^{+})	J^{π} : 2 ⁺ state is predicted to be the 2nd excited state in ²⁶ F in shell model calculations (2004El10).

[†] From Adopted Levels.

$\gamma(^{26}{\rm F})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
^x 468 17				E_{γ} : Peak energy determined at 2.2 σ confidence level. The shell model calculation for the members of $\pi d_{5/2} \otimes v d_{3/2}$ multiplets gives the lowest excited state at 353 keV level with $J^{\pi}=4^+$. 2004E110 conclude that 468 γ depopulating from this 4 ⁺ state to g.s. is unlikely, since it will be a M3 transition having too long lifetime to be observed in their experiment.
665 12	665	(2 ⁺)	0.0 1+	E_{γ} : Peak energy determined at 3.8 σ confidence level. Placement of 665 γ from 2 ⁺ state is proposed by 2004E110 from shell model calculations.

 $x \gamma$ ray not placed in level scheme.

1 H(27 F, 26 F γ) **2004El10**

Level Scheme

 ${}^{26}_{9}\rm{F}_{17}$