²⁶³Hs α decay **2009Dr02**

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Aug-2011

Parent: ²⁶³Hs: E=0; $T_{1/2}$ =0.74 ms +48–21; Q(α)=11058 61; % α decay=100.0

 263 Hs-E: the activity produced in this experiment is assumed to correspond to the g.s. of 263 Hs.

²⁶³Hs-T_{1/2}: from 2009Dr02.

²⁶³Hs-Q(α): from E α =10890 60 (2009Dr02).

²⁶³Hs-%α decay: %α ≈ 100, %SF≤8.4 (2009Dr02).

The ²⁶³Hs isotope formed in the cold fusion reaction ²⁰⁸Pb(⁵⁶Fe,n) E=280 MeV at the 88 inch cyclotron facility at LBNL. Evaporation residues were separated by the Berkeley Gas Separator. Six correlated α -decay chains were recorded. Three α -energy groups were assigned to the decay of ²⁶³Hs: 10.57 MeV 6, 10.72 MeV 6 and 10.89 MeV 6.

Production σ =21 pb +13-9 at 276.4 MeV center-of-target lab frame energy (2009Dr02) (from six events).

²⁵⁹Sg Levels

E(level)	T _{1/2}	Comments	
0	0.29 s 5	$T_{1/2}$: from Adopted Levels. For J^{π} assignment see Adopted Levels.	
		α radiations	
Eα	E(level)	Comments	
10570 [†] 60 10720 [†] 60 1089060		E α : the 10.89-MeV α group is assumed to be a transition from ²⁶³ Hs g.s. to ²⁵⁹ Sg g.s.	

[†] This α group either populates an excited state in ²⁵⁹Sg or is associated with an isomeric activity in ²⁶³Hs.