Adopted Levels | History | | | | | | |-----------------|--------------|---------------------|------------------------|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | Full Evaluation | Balraj Singh | NDS 144, 297 (2017) | 25-Aug-2017 | | | $Q(\beta^{-})=210 \text{ SY}; S(n)=5378 \text{ 4}; S(p)=4192 \text{ 6}; Q(\alpha)=7271.3 \text{ } 19$ 2017Wa10 Estimated uncertainties (2017Wa10): 100 for $Q(\beta^{-})$. S(2n)=11910 120, S(2p)=10080 100 (syst,2017Wa10). 1968Hu06: first report of the identification of 258 Md isotope. 1970Fi12: 258 Md produced in 255 Es(α ,n); measured $T_{1/2}$, $E\alpha$, $I\alpha$, $\alpha\gamma$ -coin, $\alpha/(\alpha+\varepsilon)$ ratio. 1993Mo18: 258 Md produced in 254 Es(18 O, 14 C), 254 Es(22 Ne, 18 O) reactions followed by mass separation, and chemical techniques. Additional information 1. Theoretical studies: consult the NSR database at www.nndc.bnl.gov for about 15 references dealing with theoretical calculations of half-lives for different decay modes and other nuclear structure aspects. ## ²⁵⁸Md Levels | E(level) | \mathbf{J}^{π} | T _{1/2} | Comments | | |----------|--------------------|------------------|--|--| | 0 | (8-) | 51.50 d 29 | $\%\alpha$ =100 | | | | | | $%SF + %\varepsilon + %\beta^{-} \le 0.003 \ (1993Mo18)$ | | | | | | The upper limit on SF+ ε + β ⁻ branching was determined by 1993Mo18 from the number of SF events detected. Other measurements: 1968Hu06, 1970Fi12. | | | | | | J^{π} : analogy to ²⁵⁷ Fm and ²⁵⁷ Md and Gallagher-Moszkowski rule suggests 8 ⁻ with configuration= $\pi 7/2[514] + \nu 9/2[615]$. | | | | | | $T_{1/2}$: measured by 1993Mo18. Other measurements: 56 d 7 (1970Fi12), 54 d 5 (1968Hu06). | | | 0+x | (1^{-}) | 57.0 min 9 | $\%\varepsilon=85$ 15; $\%\alpha<1.2$ | | | | | | $%SF + %\beta^{-} \le 30$ | | | | | | Decay branching ratios are from 1993Mo18. | | | | | | The ε decay branching was obtained by 1993Mo18 from fermium K x-ray counts preceding SF | | | | | | events from ²⁵⁸ Fm decay. The experimental K x-ray counts could not be corrected for summing | | | | | | of Fm K x-rays with any possible gammas from ε decay and with Fm L x-rays. 1993Mo18 set a lower limit of 70% for the ε decay branching by assuming that this decay populates only the g.s. band in 258 Fm. | | | | | | Origin of the observed SF events that were not correlated with the fermium K x-rays due to 258 Md ε decay, could either be the 57.0-min 258 Md or its β^- decay daughter, 258 No. Since these two possibilities could not be resolved, 1993Mo18 assigned the upper limit of 30% to the sum of SF and β^- decay branches. | | | | | | An upper limit of 1.2% for α branch was given by 1993Mo18 from absence of any 57.0-min α activity in their spectra. | | | | | | Possibility of decay by an isomeric transition to the ²⁵⁸ Md g.s. was also investigated, and an upper limit of 60% was obtained by 1993Mo18 for this decay mode by searching for growth of the particles from ²⁵⁸ Md g.s. by assuming that the ground state was not directly produced during the production of the 57.0-min state in ²⁵⁴ Es(¹⁸ O, ¹⁴ C) and ²⁵⁴ Es(²² Ne, ¹⁸ O) reactions. | | | | | | J ^{π} : Gallagher-Moszkowski rule suggests 1 ⁻ with configuration= π 7/2[514] – ν 9/2[615]. 1993Mo18 suggest also other K^{π} values with possible configurations: K^{π} =0 ⁻ from π 7/2[514] – ν 7/2[613] or π 3/2[521] – ν 3/2[622], and K^{π} =2 ⁻ from π 1/2[521] + ν 3/2[622]. | | | | | | T _{1/2} : measurement of 1993Mo18. Other measurements: 60 min 2 (1986Hu05), 43 min 4 (1980Ho04). | | | | | | The isomer was produced by 1980Ho04 in 255 Es(α ,n), and by 1993Mo18 in 254 Es(18 O, 14 C) and 254 Es(22 Ne, 18 O) reactions. | |