Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017

 $Q(\beta^{-})=-370 SY; S(n)=5460 SY; S(p)=3630 SY; Q(\alpha)=7740 SY 2017Wa10$

Estimated uncertainties (2017Wa10): 120 for Q(β^-), S(n) and S(p); 110 for Q(α).

S(2n)=12140 160, S(2p)=9110 120 (syst,2017Wa10).

²⁵⁶Md produced and identified by Ghiorso et al., Phys. Rev. 98, 1518 (1955) in ²⁵³Es(α,n),E=48 MeV reaction, followed by chemical separation. The half-life was reported to be about 0.5 hour. Later studies: 1958Ph40, 1965Si14, 1970Fi12, 1971Ho16, 1993Mo18.

Theoretical calculations: consult the Nuclear Science References (NSR) database for about 27 theory references. 1986So12: nuclear structure theory reference.

²⁵⁶Md Levels

Cross Reference (XREF) Flags

A 260 Lr α decay (180 s)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	, (1 ⁻)	77.7 min <i>18</i>	A	wα=9.2 7; %ε=90.8 7; %SF<3 (α)/(α+ε)=9.2% 7 is adopted from 8.5% 8, determined by 1970Fi12 from K x ray/α intensities, and 9.9% 5, determined by 1971Ho16 from ²⁵⁶ Fm growth. The latest value of 11% 3, obtained by 1993Mo18, is in agreement with the earlier values. %α=9.2 7 is an unweighted average of earlier measurements. 2000Ah02 quote %ε=92, but the source reference is not given. %SF<3 (1971Ho16). T _{1/2} : weighted average of 78.1 min 18 (1993Mo18), 77 min 5 (1971Ho16) 75 min 4 (1970Fi12), 90 min 12 (1965Si14). Other measurement: 90 min (1958Ph40). J ^π : the ε decay to the 0 ⁺ ²⁵⁶ Fm g.s. suggests low-spin, J=0,1 for the ²⁵⁶ Md g.s. From the available states in the region, analogy to ²⁵⁵ Fm suggests ν7/2[613] orbital for the odd-proton state. From the Gallagher-Moszkowski rule, the J ^π =0 ⁻ , π7/2[514], v7/2[613] state is expected to be lower than the J ^π =7 ⁻ , π7/2[514], v7/2[613] state. The 7773-keV α from ²⁵⁶ Md g.s., on the other hand, is assumed to decay to the ²⁵² Es g.s. which probably has the J ^π of 5 ⁻ with π3/2[521], v7/2[613] configuration. Since an α transition from J ^π =0 ⁻ to J ^π =5 ⁻ is forbidden, J ^π (²⁵⁶ Md g.s.)=1 ⁻ of K=0 has been suggested. Inversion of 1 ⁻ and 0 ⁻ states has also been assigned for other K=0 bands (for example in ²⁴² Am g.s.). J ^π =1 ⁻ , K=0 π7/2[514], v7/2[613] assignment for ²⁵⁶ Md is consistent with an α transition (HF=5.0×10 ⁴) to the J ^π =5 ⁻ , π3/2[521], v7/2[613] state, and with its ε decay to ²⁵⁶ Fm.
≈240			A	E(level): deduced from $Q(\alpha)(^{260}Lr)$ and measured $E\alpha$ in $^{260}Lr \alpha$ decay.