260 Lr α decay (180 s) 1971Es01

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh NDS 141, 327 (2017)

22-Mar-2017

Parent: 260 Lr: E=0.0; $T_{1/2}$ =180 s 30; $Q(\alpha)$ =8400 SY; % α decay=80 20

²⁶⁰Lr-T_{1/2}: From ²⁶⁰Lr Adopted Levels in the ENSDF database.

²⁶⁰Lr-Q(α): 8400 *140* (syst, 2017Wa10).

²⁶⁰Lr-%α decay: The α branching of ²⁶⁰Lr is adopted as 80% 20 from the ε decay branching estimated by 1971Es01 as %ε<40. 1971Es01: measured Eα, Iα, half-life of ²⁶⁰Lr decay.

256Md Levels

E(level) $I_{0.0}^{\pi}$ Comments $0.0 I_{0.0}^{\pi}$ Clevel): deduced from $I_{0.0}^{\pi}$ decay.

α radiations

Eα E(level) $Iα^{\ddagger}$ HF[†] Comments

8035 20 ≈240 100 1.8 Eα: measured by 1971Es01. The original energy is increased by 5 keV because of changes in calibration energies: 213 Fr and 211 Po α rays, $Eα(^{213}$ Fr)=6773, $Eα(^{211}$ Po)=7443, were used as internal calibration. $Eα(^{213}$ Fr)=6775.0 17, $Eα(^{211}$ Po)=7450.3 5 are recommended by

I α : only one α group was identified by 1971Es01: I α is per 100 α decays.

 $^{^{\}dagger}$ $r_0(^{256}\text{Md})$ =1.487 10, extrapolated from the r_0 values given in 1998Ak04, is used in calculation.

[‡] For absolute intensity per 100 decays, multiply by 0.80 20.